Prediction of treatment outcome using MRI radiomics and machine learning in oropharyngeal cancer patients after surgical treatment

被引:16
作者
Park, Young Min [1 ]
Lim, Jae Yol [1 ]
Koh, Yoon Woo [2 ]
Kim, Se-Heon [2 ]
Choi, Eun Chang [2 ]
机构
[1] Yonsei Univ, Gangnam Severance Hosp, Coll Med, Dept Otorhinolaryngol, 211 Eonju Ro, Seoul 06273, South Korea
[2] Yonsei Univ, Dept Otorhinolaryngol, Coll Med, Seoul, South Korea
关键词
Radiomics; MRI; Machine learning; Treatment outcome; Prediction; COMBINATION;
D O I
10.1016/j.oraloncology.2021.105559
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Objectives: In this study, we aimed to analyze preoperative MRI images of oropharyngeal cancer patients who underwent surgical treatment, extracted radiomics features, and constructed a disease recurrence and death prediction model using radiomics features and machine-learning techniques. Materials and Methods: A total of 157 patients participated in this study, and 107 stable radiomics features were selected and used for constructing a predictive model. Results: The performance of the combined model (clinical and radiomics) yielded the following results: AUC of 0.786, accuracy of 0.854, precision of 0.429, recall of 0.500, and f1 score of 0.462. The combined model showed better performance than either the clinical and radiomics only models for predicting disease recurrence. For predicting death, the combined model performance has an AUC of 0.841, accuracy of 0.771, precision of 0.308, recall of 0.667, and f1 score of 0.421. The combined model showed superior performance over the predictive model using only clinical variables. A Cox proportional hazard model using the combined variables for predicting patient death yielded a c-index value that was significantly better than that of the model including only clinical variables. Conclusions: A predictive model using clinical variables and MRI radiomics features showed excellent performance in predicting disease recurrence and death in oropharyngeal cancer patients. In the future, a multicenter study is necessary to verify the model's performance and confirm its clinical usefulness.
引用
收藏
页数:6
相关论文
共 15 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Combined CT radiomics of primary tumor and metastatic lymph nodes improves prediction of locoregional control in head and neck cancer [J].
Bogowicz, Marta ;
Tanadini-Lang, Stephanie ;
Guckenberger, Matthias ;
Riesterer, Oliver .
SCIENTIFIC REPORTS, 2019, 9 (1)
[3]   Improved outcome prediction of oropharyngeal cancer by combining clinical and MRI features in machine learning models [J].
Bos, Paula ;
van den Brekel, Michiel W. M. ;
Gouw, Zeno A. R. ;
Al-Mamgani, Abrahim ;
Taghavi, Marjaneh ;
Waktola, Selam ;
Aerts, Hugo J. W. L. ;
Castelijns, Jonas A. ;
Beets-Tan, Regina G. H. ;
Jasperse, Bas .
EUROPEAN JOURNAL OF RADIOLOGY, 2021, 139
[4]   Nasopharyngeal carcinoma [J].
Chen, Yu-Pei ;
Chan, Anthony T. C. ;
Quynh-Thu Le ;
Blanchard, Pierre ;
Sun, Ying ;
Ma, Jun .
LANCET, 2019, 394 (10192) :64-80
[5]   EVALUATING THE YIELD OF MEDICAL TESTS [J].
HARRELL, FE ;
CALIFF, RM ;
PRYOR, DB ;
LEE, KL ;
ROSATI, RA .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1982, 247 (18) :2543-2546
[6]   Exploring Applications of Radiomics in Magnetic Resonance Imaging of Head and Neck Cancer: A Systematic Review [J].
Jethanandani, Amit ;
Lin, Timothy A. ;
Volpe, Stefanie ;
Elhalawani, Hesham ;
Mohamed, Abdallah S. R. ;
Yang, Pei ;
Fuller, Clifton D. .
FRONTIERS IN ONCOLOGY, 2018, 8
[7]   DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network [J].
Katzman, Jared L. ;
Shaham, Uri ;
Cloninger, Alexander ;
Bates, Jonathan ;
Jiang, Tingting ;
Kluger, Yuval .
BMC MEDICAL RESEARCH METHODOLOGY, 2018, 18
[8]   The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges [J].
Liu, Zhenyu ;
Wang, Shuo ;
Dong, Di ;
Wei, Jingwei ;
Fang, Cheng ;
Zhou, Xuezhi ;
Sun, Kai ;
Li, Longfei ;
Li, Bo ;
Wang, Meiyun ;
Tian, Jie .
THERANOSTICS, 2019, 9 (05) :1303-1322
[9]   Outcome prediction of head and neck squamous cell carcinoma by MRI radiomic signatures [J].
Mes, Steven W. ;
van Velden, Floris H. P. ;
Peltenburg, Boris ;
Peeters, Carel F. W. ;
te Beest, Dennis E. ;
van de Wiel, Mark A. ;
Mekke, Joost ;
Mulder, Doriene C. ;
Martens, Roland M. ;
Castelijns, Jonas A. ;
Pameijer, Frank A. ;
de Bree, Remco ;
Boellaard, Ronald ;
Leemans, C. Rene ;
Brakenhoff, Ruud H. ;
de Graaf, Pim .
EUROPEAN RADIOLOGY, 2020, 30 (11) :6311-6321
[10]   CT-based Radiomic Signatures for Predicting Histopathologic Features in Head and Neck Squamous Cell Carcinoma [J].
Mukherjee, Pritam ;
Cintra, Murilo ;
Huang, Chao ;
Zhou, Mu ;
Zhu, Shankuan ;
Colevas, A. Dimitrios ;
Fischbein, Nancy ;
Gevaert, Olivier .
RADIOLOGY-IMAGING CANCER, 2020, 2 (03)