Bounds for entanglement of formation of two mode squeezed thermal states

被引:15
作者
Chen, XY [1 ]
Qiu, PL
机构
[1] China Inst Metrol, Sch Sci & Art, Hangzhou 310034, Peoples R China
[2] Univ Sci & Technol China, Lab Quantum Commun & Computat, Hefei 230026, Peoples R China
[3] Zhejiang Univ, Dept Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
关键词
bound of entanglement measure; two mode squeezed thermal state;
D O I
10.1016/S0375-9601(03)00916-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The upper and lower bounds of entanglement of formation are given for two mode squeezed thermal state. The bounds are compared with other entanglement measure or bounds. The entanglement distillation and the relative entropy of entanglement of infinitive squeezed state are obtained at the postulation of hashing inequality. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:191 / 196
页数:6
相关论文
共 20 条
[1]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[2]   QUANTUM INFORMATION AND COMPUTATION [J].
BENNETT, CH .
PHYSICS TODAY, 1995, 48 (10) :24-30
[3]   Quantum error correction for communication with linear optics [J].
Braunstein, SL .
NATURE, 1998, 394 (6688) :47-49
[4]   Teleportation of continuous quantum variables [J].
Braunstein, SL ;
Kimble, HJ .
PHYSICAL REVIEW LETTERS, 1998, 80 (04) :869-872
[5]   Coherent information on thermal radiation noise channel: An approach of integral within ordered product of operators [J].
Chen, XY ;
Qiu, PL .
CHINESE PHYSICS, 2001, 10 (09) :779-782
[6]   QUANTUM COMPUTATION [J].
DIVINCENZO, DP .
SCIENCE, 1995, 270 (5234) :255-261
[7]   Inseparability criterion for continuous variable systems [J].
Duan, LM ;
Giedke, G ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 2000, 84 (12) :2722-2725
[8]   Encoding a qubit in an oscillator [J].
Gottesman, D ;
Kitaev, A ;
Preskill, J .
PHYSICAL REVIEW A, 2001, 64 (01) :123101-1231021
[9]   Capacity of quantum Gaussian channels [J].
Holevo, AS ;
Sohma, M ;
Hirota, O .
PHYSICAL REVIEW A, 1999, 59 (03) :1820-1828
[10]   Unified approach to quantum capacities: Towards quantum noisy coding theorem [J].
Horodecki, M ;
Horodecki, P ;
Horodecki, R .
PHYSICAL REVIEW LETTERS, 2000, 85 (02) :433-436