Visual Attention Based Motion Object Detection and Trajectory Tracking

被引:0
|
作者
Guo, Wen [1 ,2 ]
Xu, Changsheng [1 ]
Ma, Songde [1 ]
Xu, Min [3 ]
机构
[1] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing, Peoples R China
[2] Shandong Inst Business & Technol, Dept Elect Engn, Yantai, Peoples R China
[3] Univ Technol Sydney, Fac Engn & Informat Technol, Sydney, NSW, Australia
来源
ADVANCES IN MULTIMEDIA INFORMATION PROCESSING-PCM 2010, PT II | 2010年 / 6298卷
基金
中国国家自然科学基金;
关键词
Visual attention; object detection; trajectory tracking;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A motion trajectory tracking method using a novel visual attention model and kernel density estimation is proposed in this paper. As a crucial step, moving objects detection is based on visual attention. The visual attention model is built by combination of the static and motion feature attention map and a Karhunen-Loeve transform (KLT) distribution map. Since the visual attention analysis is conducted on object level instead of pixel level, the proposed method can detect any kinds of motion objects provided saliency without the affection of objects appearance and surrounding circumstance. After locating the region of moving object, the kernel density is estimated for trajectory tracking. The experimental results show that the proposed method is promising for moving objects detection and trajectory tracking.
引用
收藏
页码:462 / +
页数:2
相关论文
共 50 条
  • [21] Research on Sports Video Motion Object Detection and Tracking Method Based on Hybrid Algorithm
    Niu, Zili
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON MODELING, NATURAL LANGUAGE PROCESSING AND MACHINE LEARNING, CMNM 2024, 2024, : 381 - 385
  • [22] Fish Trajectory Extraction Based on Object Detection
    Li, Xinghui
    Liu, Meiqin
    Zhang, Senlin
    Zheng, Ronghao
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 6584 - 6588
  • [23] A MODEL OF VISUAL ATTENTION DETECTION BASED ON PHASE SPECTRUM
    Pei, Chaoke
    Gao, Li
    Wang, Donghui
    Hou, Chaohuan
    2010 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME 2010), 2010, : 691 - 696
  • [24] Visual Attention Region Detection Using Texture and Object Features
    Chen, Hsuan-Ying
    Leou, Jin-Jang
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2010, 26 (05) : 1657 - 1675
  • [25] Research on Band Selection of Visual Attention Mechanism for Object Detection
    YANG Guang
    JIN Chun-bai
    REN Chun-ying
    LIU Wen-Jing
    CHEN Qiang
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44 (01) : 266 - 274
  • [26] Multi-scale coupled attention for visual object detection
    Li, Fei
    Yan, Hongping
    Shi, Linsu
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [27] Object Detection and Tracking using CouNT and Motion Vectors on FPGA
    Kunimoto, Yoshiki
    Maruyama, Tsutomu
    PROCEEDINGS OF THE 12TH INTERNATIONAL SYMPOSIUM ON HIGHLY EFFICIENT ACCELERATORS AND RECONFIGURABLE TECHNOLOGIES, HEART 2022, 2022, : 108 - 111
  • [28] Object-based visual attention for computer vision
    Sun, YR
    Fisher, R
    ARTIFICIAL INTELLIGENCE, 2003, 146 (01) : 77 - 123
  • [29] Studying visual attention using the multiple object tracking paradigm: A tutorial review
    Meyerhoff, Hauke S.
    Papenmeier, Frank
    Huff, Markus
    ATTENTION PERCEPTION & PSYCHOPHYSICS, 2017, 79 (05) : 1255 - 1274
  • [30] Studying visual attention using the multiple object tracking paradigm: A tutorial review
    Hauke S. Meyerhoff
    Frank Papenmeier
    Markus Huff
    Attention, Perception, & Psychophysics, 2017, 79 : 1255 - 1274