Visual Attention Based Motion Object Detection and Trajectory Tracking

被引:0
|
作者
Guo, Wen [1 ,2 ]
Xu, Changsheng [1 ]
Ma, Songde [1 ]
Xu, Min [3 ]
机构
[1] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing, Peoples R China
[2] Shandong Inst Business & Technol, Dept Elect Engn, Yantai, Peoples R China
[3] Univ Technol Sydney, Fac Engn & Informat Technol, Sydney, NSW, Australia
来源
ADVANCES IN MULTIMEDIA INFORMATION PROCESSING-PCM 2010, PT II | 2010年 / 6298卷
基金
中国国家自然科学基金;
关键词
Visual attention; object detection; trajectory tracking;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A motion trajectory tracking method using a novel visual attention model and kernel density estimation is proposed in this paper. As a crucial step, moving objects detection is based on visual attention. The visual attention model is built by combination of the static and motion feature attention map and a Karhunen-Loeve transform (KLT) distribution map. Since the visual attention analysis is conducted on object level instead of pixel level, the proposed method can detect any kinds of motion objects provided saliency without the affection of objects appearance and surrounding circumstance. After locating the region of moving object, the kernel density is estimated for trajectory tracking. The experimental results show that the proposed method is promising for moving objects detection and trajectory tracking.
引用
收藏
页码:462 / +
页数:2
相关论文
共 50 条
  • [1] Object Tracking Based on Visual Attention
    Lin, Mingqiang
    Dai, Houde
    2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2016, : 1846 - 1849
  • [2] Novel infrared object detection and tracking algorithm based on visual attention
    Liu, Lei
    Chen, Xu
    Xia, Qi
    TARGET AND BACKGROUND SIGNATURES IV, 2018, 10794
  • [3] Fast object detection based on selective visual attention
    Guo, Mingwei
    Zhao, Yuzhou
    Zhang, Chenbin
    Chen, Zonghai
    NEUROCOMPUTING, 2014, 144 : 184 - 197
  • [4] A visual attention model for robot object tracking
    Chu J.-K.
    Li R.-H.
    Li Q.-Y.
    Wang H.-Q.
    International Journal of Automation and Computing, 2010, 7 (01) : 39 - 46
  • [5] Visual Object Detection and Tracking for Internet of Things Devices Based on Spatial Attention Powered Multidomain Network
    Gao, Haining
    Yu, Lei
    Khan, Imran Ali
    Wang, Yinling
    Yang, Yong
    Shen, Hongdan
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (04) : 2811 - 2820
  • [6] A Visual Attention Model for Robot Object Tracking
    Jin-Kui Chu Rong-Hua Li Qing-Ying Li Hong-Qing Wang School of Mechanical Engineering
    Machine Intelligence Research, 2010, (01) : 39 - 46
  • [7] Object-based visual attention in luminance increment detection?
    Stuart, GW
    Maruff, P
    Currie, J
    NEUROPSYCHOLOGIA, 1997, 35 (06) : 843 - 853
  • [8] Motion-Based Multiple Object Detection and Tracking in Video
    Sadura, Piotr
    2021 SIGNAL PROCESSING SYMPOSIUM (SPSYMPO), 2021, : 248 - 251
  • [9] Motion-seeded object-based attention for dynamic visual imagery
    Huber, David J.
    Khosla, Deepak
    Kim, Kyungnam
    AUTOMATIC TARGET RECOGNITION XXVII, 2017, 10202
  • [10] Training-Based Methods for Comparison of Object Detection Methods for Visual Object Tracking
    Delforouzi, Ahmad
    Pamarthi, Bhargav
    Grzegorzek, Marcin
    SENSORS, 2018, 18 (11)