Internal-external cross-validation helped to evaluate the generalizability of prediction models in large clustered datasets

被引:28
作者
Takada, Toshihiko [1 ]
Nijman, Steven [1 ]
Denaxas, Spiros [2 ,3 ,4 ,5 ]
Snell, Kym I. E. [6 ]
Uijl, Alicia [1 ,7 ,8 ]
Nguyen, Tri-Long [1 ,9 ]
Asselbergs, Folkert W. [2 ,10 ]
Debray, Thomas P. A. [1 ,2 ]
机构
[1] Univ Utrecht, Univ Med Ctr Utrecht, Julius Ctr Hlth Sci & Primary Care, Univ Weg 100, NL-3584 CG Utrecht, Netherlands
[2] UCL, Hlth Data Res UK & Inst Hlth Informat, Gibbs Bldg,215 Euston Rd, London NW1 2BE, England
[3] Alan Turing Inst, British Lib, 96 Euston Rd, London NW1 2DB, England
[4] UCL, Univ Coll London Hosp, Biomed Res Ctr, Natl Inst Hlth Res, Suite A,1st Floor,Maple House, London W1T 7DN, England
[5] UCL, British Heart Fdn Res Accelerator, Gower St, London WC1E 6BT, England
[6] Keele Univ, Sch Med, Ctr Prognosis Res, Keele ST5 5BG, Staffs, England
[7] Karolinska Inst, Dept Med, Div Cardiol, S-17177 Stockholm, Sweden
[8] Univ Utrecht, Univ Med Ctr Utrecht, Dept Cardiol, Div Heart & Lungs, Heidelberglaan 100,POB 85500, NL-3508 GA Utrecht, Netherlands
[9] Univ Copenhagen, CSS, Dept Publ Hlth, Sect Epidemiol, Oster Farimagsgade 5, DK-1353 Copenhagen K, Denmark
[10] UCL, Inst Cardiovasc Sci, Fac Populat Hlth Sci, Gower St, London WC1E 6BT, England
基金
欧盟地平线“2020”;
关键词
Prediction model; Calibration; Discrimination; Validation; Heterogeneity; Model comparison; INCIDENT HEART-FAILURE; MULTIPLE IMPUTATION; METAANALYSIS; PERFORMANCE; BIOMARKERS; RISK;
D O I
10.1016/j.jclinepi.2021.03.025
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Objective: To illustrate how to evaluate the need of complex strategies for developing generalizable prediction models in large clustered datasets. Study Design and Setting: We developed eight Cox regression models to estimate the risk of heart failure using a large population level dataset. These models differed in the number of predictors, the functional form of the predictor effects (non-linear effects and interaction) and the estimation method (maximum likelihood and penalization). Internal-external cross-validation was used to evaluate the models' generalizability across the included general practices. Results: Among 871,687 individuals from 225 general practices, 43,987 (5.5%) developed heart failure during a median follow-up time of 5.8 years. For discrimination, the simplest prediction model yielded a good concordance statistic, which was not much improved by adopting complex strategies. Between-practice heterogeneity in discrimination was similar in all models. For calibration, the simplest model performed satisfactorily. Although accounting for non-linear effects and interaction slightly improved the calibration slope, it also led to more heterogeneity in the observed/expected ratio. Similar results were found in a second case study involving patients with stroke. Conclusion: In large clustered datasets, prediction model studies may adopt internal-external cross-validation to evaluate the generalizability of competing models, and to identify promising modelling strategies. (c) 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license ( http:// creativecommons.org/ licenses/ by/ 4.0/ )
引用
收藏
页码:83 / 91
页数:9
相关论文
共 32 条
  • [1] Prediction of Incident Heart Failure in General Practice The Atherosclerosis Risk in Communities (ARIC) Study
    Agarwal, Sunil K.
    Chambless, Lloyd E.
    Ballantyne, Christie M.
    Astor, Brad
    Bertoni, Alain G.
    Chang, Patricia P.
    Folsom, Aaron R.
    He, Max
    Hoogeveen, Ron C.
    Ni, Hanyu
    Quibrera, Pedro M.
    Rosamond, Wayne D.
    Russell, Stuart D.
    Shahar, Eyal
    Heiss, Gerardo
    [J]. CIRCULATION-HEART FAILURE, 2012, 5 (04) : 422 - 429
  • [2] Developing and validating risk prediction models in an individual participant data meta-analysis
    Ahmed, Ikhlaaq
    Debray, Thomas P. A.
    Moons, Karel G. M.
    Riley, Richard D.
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2014, 14
  • [3] [Anonymous], 2019, PROGNOSIS RES HLTH C, V1st
  • [4] Multiple Imputation for Multilevel Data with Continuous and Binary Variables
    Audigier, Vincent
    White, Ian R.
    Jolani, Shahab
    Debray, Thomas P. A.
    Quartagno, Matteo
    Carpenter, James
    van Buuren, Stef
    Resche-Rigon, Matthieu
    [J]. STATISTICAL SCIENCE, 2018, 33 (02) : 160 - 183
  • [5] Combining multiple imputation and meta-analysis with individual participant data
    Burgess, Stephen
    White, Ian R.
    Resche-Rigon, Matthieu
    Wood, Angela M.
    [J]. STATISTICS IN MEDICINE, 2013, 32 (26) : 4499 - 4514
  • [6] A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models
    Christodoulou, Evangelia
    Ma, Jie
    Collins, Gary S.
    Steyerberg, Ewout W.
    Verbakel, Jan Y.
    Van Calster, Ben
    [J]. JOURNAL OF CLINICAL EPIDEMIOLOGY, 2019, 110 : 12 - 22
  • [7] Prediction models for cardiovascular disease risk in the general population: systematic review
    Damen, Johanna A. A. G.
    Hooft, Lotty
    Schuit, Ewoud
    Debray, Thomas P. A.
    Collins, Gary S.
    Tzoulaki, Ioanna
    Lassale, Camille M.
    Siontis, George C. M.
    Chiocchia, Virginia
    Roberts, Corran
    Schlussel, Michael Maia
    Gerry, Stephen
    Black, James A.
    Heus, Pauline
    van der Schouw, Yvonne T.
    Peelen, Linda M.
    Moons, Karel G. M.
    [J]. BMJ-BRITISH MEDICAL JOURNAL, 2016, 353
  • [8] Evidence synthesis in prognosis research
    Thomas P.A. Debray
    Valentijn M.T. de Jong
    Karel G.M. Moons
    Richard D. Riley
    [J]. Diagnostic and Prognostic Research, 3 (1)
  • [9] A framework for meta-analysis of prediction model studies with binary and time-to-event outcomes
    Debray, Thomas P. A.
    Damen, Johanna A. A. G.
    Riley, Richard D.
    Snell, Kym
    Reitsma, Johannes B.
    Hooft, Lotty
    Collins, Gary S.
    Moons, Karel G. M.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (09) : 2768 - 2786
  • [10] A guide to systematic review and meta-analysis of prediction model performance
    Debray, Thomas P. A.
    Damen, Johanna A. A. G.
    Snell, Kym I. E.
    Ensor, Joie
    Hooft, Lotty
    Reitsma, Johannes B.
    Riley, Richard D.
    Moons, Karel G. M.
    [J]. BMJ-BRITISH MEDICAL JOURNAL, 2017, 356