Automatic detection of epileptic seizure events using the time-frequency features and machine learning

被引:18
|
作者
Zeng, Jiale [1 ,2 ]
Tan, Xiao-dan [2 ]
Zhan, Chang'an A. [1 ,2 ]
机构
[1] Southern Med Univ, Guangdong Prov Key Lab Med Image Proc, 1023 Shatai Rd, Guangzhou 510515, Peoples R China
[2] Southern Med Univ, Sch Biomed Engn, 1023 Shatai Rd, Guangzhou 510515, Peoples R China
关键词
Epileptic seizure detection; Time-frequency feature extraction; Empirical wavelet transform; Discrete wavelet transform; Machine learning; EMPIRICAL MODE DECOMPOSITION; DISCRETE WAVELET TRANSFORM; EEG RECORDS; CLASSIFICATION;
D O I
10.1016/j.bspc.2021.102916
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Computer-aided seizure detection from the long-term EEG has shown great potential in improving the epilepsy diagnosis accuracy and efficiency. This study was aimed to utilize prior knowledge about the epileptic EEG signals in choosing the algorithms and parameters in order to improve the performance and robustness for seizure detection. Our choices included the kurtosis-based channel selection, five-level empirical wavelet transform (EWT) for EEG signal decomposition adaptive to the power spectra of individual channels, the direct use of the instantaneous time-frequency features, and post-processing of classification outcomes. Using the publicly available CHB-MIT epileptic EEG database, we tested our algorithm against the high performance ones published in the recent literature and the high potential alternatives. Our algorithm achieved the mean sensitivity, specificity, and accuracy of 99.77%, 99.88%, and 99.88%, respectively, surpassing the best results in the literature in terms of mean performance. More importantly, the performance was highly consistent across all the tested patient cases. Statistical analysis showed that the levels of EWT and the direct use of time-frequency features had the greatest impacts on the final seizure detection performance. In addition, our results showed that k-nearest neighbors (KNN) and support vector machine (SVM) outperformed random forest (RF) classifier, contrary to the finding the RF being the best for seizure detection task in the literature. Our findings demonstrate the value of prior-knowledge-based feature extraction and suggest the equal importance of feature extraction and classifier in the seizure detection algorithm.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine
    Song, Yuedong
    Crowcroft, Jon
    Zhang, Jiaxiang
    JOURNAL OF NEUROSCIENCE METHODS, 2012, 210 (02) : 132 - 146
  • [42] Detection of newborns' EEG seizure using time-frequency divergence measures
    Zarjam, P
    Azemi, G
    Mesbah, M
    Boashash, B
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL V, PROCEEDINGS: DESIGN AND IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS INDUSTRY TECHNOLOGY TRACKS MACHINE LEARNING FOR SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING SIGNAL PROCESSING FOR EDUCATION, 2004, : 429 - 432
  • [43] A sequential method using multiplicative extreme learning machine for epileptic seizure detection
    Li, Dazi
    Xie, Qianwen
    Jin, Qibing
    Hirasawa, Kotaro
    NEUROCOMPUTING, 2016, 214 : 692 - 707
  • [44] Epileptic Seizure Detection for Imbalanced Datasets Using an Integrated Machine Learning Approach
    Masum, Mohammad
    Shahriar, Hossain
    Haddad, Hisham M.
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 5416 - 5419
  • [45] Abnormal Heart Sound Detection using Time-Frequency Analysis and Machine Learning Techniques
    Nia, Parastoo Sadeghi
    Hesar, Hamed Danandeh
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 90
  • [46] Automatic epileptic seizure detection using LSTM networks
    Shekokar, Kishori Sudhir
    Dour, Shweta
    WORLD JOURNAL OF ENGINEERING, 2022, 19 (02) : 224 - 229
  • [47] EMOTION RECOGNITION USING TIME-FREQUENCY FEATURES FROM PORTABLE EEG AND MACHINE LEARNING METHODS
    Lin, Tong
    Dou, Guangyao
    Qu, Xiaodong
    Sekuler, Robert
    Gutsell, Jennifer
    PSYCHOPHYSIOLOGY, 2023, 60 : S162 - S162
  • [48] Supervised learning in automatic channel selection for epileptic seizure detection
    Nhan Duy Truong
    Kuhlmann, Levin
    Bonyadi, Mohammad Reza
    Yang, Jiawei
    Faulks, Andrew
    Kavehei, Omid
    EXPERT SYSTEMS WITH APPLICATIONS, 2017, 86 : 199 - 207
  • [49] New Automatic EEG Epileptic Seizure Detection Approach Using Sliding Discrete Fourier Transform and Machine Learning Techniques
    Abdulhussien, Amal Salman
    AbdulSadda, Ahmad T.
    Al Farawn, Ali
    2021 2ND ASIA CONFERENCE ON COMPUTERS AND COMMUNICATIONS (ACCC 2021), 2021, : 26 - 31
  • [50] A framework on wavelet-based nonlinear features and extreme learning machine for epileptic seizure detection
    Chen, Lan-Lan
    Zhang, Jian
    Zou, Jun-Zhong
    Zhao, Chen-Jie
    Wang, Gui-Song
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2014, 10 : 1 - 10