On the motives of moduli of chains and Higgs bundles

被引:55
|
作者
Garcia-Prada, Oscar [1 ]
Heinloth, Jochen [2 ]
Schmitt, Alexander [3 ]
机构
[1] CSIC UAM UC3M UCM, Inst Ciencias Matemat, Madrid 28049, Spain
[2] Univ Duisburg Essen, Fachbereich Math, D-45117 Essen, Germany
[3] Free Univ Berlin, Inst Math, D-14195 Berlin, Germany
关键词
COMPACT RIEMANN SURFACES; HODGE POLYNOMIALS; HOLOMORPHIC-CHAINS; LANGLANDS DUALITY; MIRROR SYMMETRY; VECTOR-BUNDLES; ZETA-FUNCTIONS; HITCHIN PAIRS; ARTIN STACKS; SPACES;
D O I
10.4171/JEMS/494
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We take another approach to Hitchin's strategy of computing the cohomology of moduli spaces of Higgs bundles by localization with respect to the circle action. Our computation is done in the dimensional completion of the Grothendieck ring of varieties and starts by describing the classes of moduli stacks of chains rather than their coarse moduli spaces. As an application we show that the n-torsion of the Jacobian acts trivially on the middle-dimensional cohomology of the moduli space of twisted SLn-Higgs bundles of degree coprime to n and we give an explicit formula for the motive of the moduli space of Higgs bundles of rank 4 and odd degree. This provides new evidence for a conjecture of Hausel and Rodriguez-Villegas. Along the way we find explicit recursion formulas for the motives of several types of moduli spaces of stable chains.
引用
收藏
页码:2617 / 2668
页数:52
相关论文
共 50 条
  • [1] On the motives of moduli of parabolic chains and parabolic Higgs bundles
    Do, Viet Cuong
    BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 193
  • [2] Motives of moduli spaces of rank 3 vector bundles and Higgs bundles on a curve
    Fu, Lie
    Hoskins, Victoria
    Lehalleur, Simon Pepin
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (01): : 66 - 89
  • [3] Lie algebroid connections, twisted Higgs bundles and motives of moduli spaces
    Alfaya, David
    Oliveira, Andre
    JOURNAL OF GEOMETRY AND PHYSICS, 2024, 201
  • [4] Motivic classes of moduli of Higgs bundles and moduli of bundles with connections
    Fedorov, Roman
    Soibelman, Alexander
    Soibelman, Yan
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2018, 12 (04) : 687 - 766
  • [5] Compactification of moduli of Higgs bundles
    Hausel, T
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1998, 503 : 169 - 192
  • [6] Stratifications on the moduli space of Higgs bundles
    Gothen, Peter B.
    Zuniga-Rojas, Ronald A.
    PORTUGALIAE MATHEMATICA, 2017, 74 (02) : 127 - 148
  • [7] ENDS OF THE MODULI SPACE OF HIGGS BUNDLES
    Mazzeo, Rafe
    Swoboda, Jan
    Weiss, Hartmut
    Witt, Frederik
    DUKE MATHEMATICAL JOURNAL, 2016, 165 (12) : 2227 - 2271
  • [8] Geometry of moduli spaces of Higgs bundles
    Biswas, Indranil
    Schumacher, Georg
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2006, 14 (04) : 765 - 793
  • [9] On the Kirwan map for moduli of Higgs bundles
    Cliff, Emily
    Nevins, Thomas
    Shen, Shiyu
    ALGEBRAIC GEOMETRY, 2021, 8 (04): : 389 - 404
  • [10] Stacky dualities for the moduli of Higgs bundles
    Derryberry, Richard
    ADVANCES IN MATHEMATICS, 2020, 368