Emerging concepts in bioenergetics and cancer research: Metabolic flexibility, coupling, symbiosis, switch, oxidative tumors, metabolic remodeling, signaling and bioenergetic therapy

被引:100
作者
Obre, Emilie [1 ]
Rossignol, Rodrigue [1 ]
机构
[1] Univ Bordeaux, Lab MRGM Rare Dis Genet & Metab, Bordeaux, France
关键词
Mitochondria; Oxidative phosphorylation; Cancer; Metabolic flexibility; Oncobioenergetics; REDUCTIVE GLUTAMINE-METABOLISM; RESPIRATORY-CHAIN; MITOCHONDRIAL DISEASE; AEROBIC GLYCOLYSIS; TRANSFORMED-CELLS; LEUKEMIA-CELLS; GROWTH; INHIBITION; PROTEIN; PHOSPHORYLATION;
D O I
10.1016/j.biocel.2014.12.008
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The field of energy metabolism dramatically progressed in the last decade, owing to a large number of cancer studies, as well as fundamental investigations on related transcriptional networks and cellular interactions with the microenvironment. The concept of metabolic flexibility was clarified in studies showing the ability of cancer cells to remodel the biochemical pathways of energy transduction and linked anabolism in response to glucose, glutamine or oxygen deprivation. A clearer understanding of the large-scale bioenergetic impact of C-MYC, MYCN, KRAS and P53 was obtained, along with its modification during the course of tumor development. The metabolic dialog between different types of cancer cells, but also with the stroma, also complexified the understanding of bioenergetics and raised the concepts of metabolic symbiosis and reverse Warburg effect. Signaling studies revealed the role of respiratory chain-derived reactive oxygen species for metabolic remodeling and metastasis development. The discovery of oxidative tumors in human and mice models related to chemoresistance also changed the prevalent view of dysfunctional mitochondria in cancer cells. Likewise, the influence of energy metabolism-derived oncometabolites emerged as a new means of tumor genetic regulation. The knowledge obtained on the multi-site regulation of energy metabolism in tumors was translated to cancer preclinical studies, supported by genetic proof of concept studies targeting LDHA, HK2, PGAM1, or ACLY. Here, we review those different facets of metabolic remodeling in cancer, from its diversity in physiology and pathology, to the search of the genetic determinants, the microenvironmental regulators and pharmacological modulators. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:167 / 181
页数:15
相关论文
共 107 条
[81]   Mitochondria: Mitochondrial OXPHOS (dys) function ex vivo - The use of primary fibroblasts [J].
Saada, Ann .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2014, 48 :60-65
[82]   Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction [J].
Samudio, Ismael ;
Harmancey, Romain ;
Fiegl, Michael ;
Kantarjian, Hagop ;
Konopleva, Marina ;
Korchin, Borys ;
Kaluarachchi, Kumar ;
Bornmann, William ;
Duvvuri, Seshagiri ;
Taegtmeyer, Heinrich ;
Andreeff, Michael .
JOURNAL OF CLINICAL INVESTIGATION, 2010, 120 (01) :142-156
[83]   Supercomplexes in the respiratory chains of yeast and mammalian mitochondria [J].
Schägger, H ;
Pfeiffer, K .
EMBO JOURNAL, 2000, 19 (08) :1777-1783
[84]   Blue-native gels to isolate protein complexes from mitochondria [J].
Schägger, H .
METHODS IN CELL BIOLOGY, VOL 65, 2001, 65 :231-244
[85]  
Scheffler I.E., 1999, MITOCHONDRIA
[86]   Mitochondrial energetic and AKT status mediate metabolic effects and apoptosis of metformin in human leukemic cells [J].
Scotland, S. ;
Saland, E. ;
Skuli, N. ;
de Toni, F. ;
Boutzen, H. ;
Micklow, E. ;
Senegas, I. ;
Peyraud, R. ;
Peyriga, L. ;
Theodoro, F. ;
Dumon, E. ;
Martineau, Y. ;
Danet-Desnoyers, G. ;
Bono, F. ;
Rocher, C. ;
Levade, T. ;
Manenti, S. ;
Junot, C. ;
Portais, J-C ;
Alet, N. ;
Recher, C. ;
Selak, M. A. ;
Carroll, M. ;
Sarry, J-E .
LEUKEMIA, 2013, 27 (11) :2129-2138
[87]   Inhibition of Glutaminase Preferentially Slows Growth of Glioma Cells with Mutant IDH1 [J].
Seltzer, Meghan J. ;
Bennett, Bryson D. ;
Joshi, Avadhut D. ;
Gao, Ping ;
Thomas, Ajit G. ;
Ferraris, Dana V. ;
Tsukamoto, Takashi ;
Rojas, Camilo J. ;
Slusher, Barbara S. ;
Rabinowitz, Joshua D. ;
Dang, Chi V. ;
Riggins, Gregory J. .
CANCER RESEARCH, 2010, 70 (22) :8981-8987
[88]   Design, Synthesis, and Pharmacological Evaluation of Bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl Sulfide 3 (BPTES) Analogs as Glutaminase Inhibitors [J].
Shukla, Krupa ;
Ferraris, Dana V. ;
Thomas, Ajit G. ;
Stathis, Marigo ;
Duvall, Bridget ;
Delahanty, Greg ;
Alt, Jesse ;
Rais, Rana ;
Rojas, Camilo ;
Gao, Ping ;
Xiang, Yan ;
Dang, Chi V. ;
Slusher, Barbara S. ;
Tsukamoto, Takashi .
JOURNAL OF MEDICINAL CHEMISTRY, 2012, 55 (23) :10551-10563
[89]   Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway [J].
Son, Jaekyoung ;
Lyssiotis, Costas A. ;
Ying, Haoqiang ;
Wang, Xiaoxu ;
Hua, Sujun ;
Ligorio, Matteo ;
Perera, Rushika M. ;
Ferrone, Cristina R. ;
Mullarky, Edouard ;
Ng Shyh-Chang ;
Kang, Ya'an ;
Fleming, Jason B. ;
Bardeesy, Nabeel ;
Asara, John M. ;
Haigis, Marcia C. ;
DePinho, Ronald A. ;
Cantley, Lewis C. ;
Kimmelman, Alec C. .
NATURE, 2013, 496 (7443) :101-+
[90]   Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice [J].
Sonveaux, Pierre ;
Vegran, Frederique ;
Schroeder, Thies ;
Wergin, Melanie C. ;
Verrax, Julien ;
Rabbani, Zahid N. ;
De Saedeleer, Christophe J. ;
Kennedy, Kelly M. ;
Diepart, Caroline ;
Jordan, Benedicte F. ;
Kelley, Michael J. ;
Gallez, Bernard ;
Wahl, Miriam L. ;
Feron, Olivier ;
Dewhirst, Mark W. .
JOURNAL OF CLINICAL INVESTIGATION, 2008, 118 (12) :3930-3942