Plasmonic Core-Shell Zirconium Nitride-Silicon Oxynitride Nanoparticles

被引:65
作者
Exarhos, Stephen [1 ]
Alvarez-Barragan, Alejandro [1 ]
Aytan, Ece [2 ]
Balandin, Alexander A. [2 ,3 ]
Mangolini, Lorenzo [1 ,2 ]
机构
[1] Univ Calif Riverside, Bourns Coll Engn, Mech Engn Dept, Riverside, CA 92521 USA
[2] Univ Calif Riverside, Bourns Coll Engn, Mat Sci & Engn Program, Riverside, CA 92521 USA
[3] Univ Calif Riverside, Bourns Coll Engn, Dept Elect & Comp Engn, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
CHEMICAL-VAPOR-DEPOSITION; THIN-FILMS; OXIDATION RESISTANCE; OPTICAL-PROPERTIES; TIN-NANOPARTICLES; TITANIUM NITRIDE; ZRN; NANOCOMPOSITE; RESONANCE; XPS;
D O I
10.1021/acsenergylett.8b01478
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We discuss the synthesis and properties of plasmonic zirconium nitride nanocrystals produced using a nonthermal plasma reactor. The process enables the continuous conversion of chemical precursors into free-standing similar to 10 nm diameter nanoparticles. Oxidation limits the resonant plasmon energy from similar to 2.6 eV for ideal unoxidized particles to similar to 2.1 eV for particles exposed to air at room temperature. A simple modification to the plasma process allows the in-flight growth of a conformal silicon oxynitride shell onto the zirconium nitride core. The shell inhibits the oxidation of the core, resulting in particles with a plasmon energy of 2.35 eV. These particles show good plasmonic behavior even after annealing in air at 300 degrees C, largely improved when compared to unprotected particles that oxidize and lose plasmonic activity at the same temperature. This work represents a step toward the development of earth-abundant, thermally and chemically resistant nanoparticles that can offer an inexpensive alternative to gold and silver and extended applicability in harsh environments.
引用
收藏
页码:2349 / 2356
页数:15
相关论文
共 55 条
[1]   Stress, phase stability and oxidation resistance of ternary Ti-Me-N (Me = Zr, Ta) hard coatings [J].
Abadias, G. ;
Koutsokeras, L. E. ;
Siozios, A. ;
Patsalas, P. .
THIN SOLID FILMS, 2013, 538 :56-70
[2]  
[Anonymous], J AM CERAM SOC
[3]   A Non-Thermal Plasma Route to Plasmonic TiN Nanoparticles [J].
Barragan, Alejandro Alvarez ;
Ilawe, Niranjan V. ;
Zhong, Lanlan ;
Wong, Bryan M. ;
Mangolini, Lorenzo .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (04) :2316-2322
[4]   Low-Loss Plasmonic Metamaterials [J].
Boltasseva, Alexandra ;
Atwater, Harry A. .
SCIENCE, 2011, 331 (6015) :290-291
[5]   Plasmon-assisted chemical vapor deposition [J].
Boyd, David A. ;
Greengard, Leslie ;
Brongersma, Mark ;
El-Naggar, Mohamed Y. ;
Goodwin, David G. .
NANO LETTERS, 2006, 6 (11) :2592-2597
[6]   Influence of ZrN on oxidation resistance of Ti-Al-N coating [J].
Chen, Li ;
He, Linqing ;
Xu, Yuxiang ;
Zhou, Liangcai ;
Pei, Fei ;
Du, Yong .
SURFACE & COATINGS TECHNOLOGY, 2014, 244 :87-91
[7]   Continuous-flow, atmospheric-pressure microplasmas: a versatile source for metal nanoparticle synthesis in the gas or liquid phase [J].
Chiang, Wei-Hung ;
Richmonds, Carolyn ;
Sankaran, R. Mohan .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2010, 19 (03)
[8]  
Chiang WH, 2009, NAT MATER, V8, P882, DOI [10.1038/NMAT2531, 10.1038/nmat2531]
[9]   Microstructure evolution of ZrN films annealed in vacuum [J].
Chieh, YC ;
Lo, WZ ;
Lu, FH .
SURFACE & COATINGS TECHNOLOGY, 2006, 200 (10) :3336-3340
[10]  
Clavero C, 2014, NAT PHOTONICS, V8, P95, DOI [10.1038/NPHOTON.2013.238, 10.1038/nphoton.2013.238]