New graph polynomials in parametric QED Feynman integrals

被引:5
|
作者
Golz, Marcel [1 ]
机构
[1] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany
关键词
Feynman integral; Graph polynomial; Quantum electrodynamics;
D O I
10.1016/j.aop.2017.08.010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In recent years enormous progress has been made in perturbative quantum field theory by applying methods of algebraic geometry to parametric Feynman integrals for scalar theories. The transition to gauge theories is complicated not only by the fact that their parametric integrand is much larger and more involved. It is, moreover, only implicitly given as the result of certain differential operators applied to the scalar integrand exp(-Phi(Gamma)/Psi(Gamma)), where Psi(Gamma) and Phi(Gamma) are the Kirchhoff and Symanzik polynomials of the Feynman graph Gamma. In the case of quantum electrodynamics we find that the full parametric integrand inherits a rich combinatorial structure from Psi(Gamma) and Phi(Gamma). In the end, it can be expressed explicitly as a sum over products of new types of graph polynomials which have a combinatoric interpretation via simple cycle subgraphs of Gamma. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:328 / 346
页数:19
相关论文
共 37 条
  • [1] Hypergeometric structures in Feynman integrals
    J. Blümlein
    M. Saragnese
    C. Schneider
    Annals of Mathematics and Artificial Intelligence, 2023, 91 : 591 - 649
  • [2] Hypergeometric structures in Feynman integrals
    Bluemlein, J.
    Saragnese, M.
    Schneider, C.
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2023, 91 (05) : 591 - 649
  • [3] Finding new relationships between hypergeometric functions by evaluating Feynman integrals
    Kniehl, Bernd A.
    Tarasov, Oleg V.
    NUCLEAR PHYSICS B, 2012, 854 (03) : 841 - 852
  • [4] Picard–Fuchs Equations for Feynman Integrals
    Stefan Müller-Stach
    Stefan Weinzierl
    Raphael Zayadeh
    Communications in Mathematical Physics, 2014, 326 : 237 - 249
  • [5] Feynman Integrals and Motives of Configuration Spaces
    Ozgür Ceyhan
    Matilde Marcolli
    Communications in Mathematical Physics, 2012, 313 : 35 - 70
  • [6] Using Functional Equations to Calculate Feynman Integrals
    Tarasov, O. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2019, 200 (02) : 1205 - 1221
  • [7] Asymptotic expansion of Feynman integrals near threshold
    Beneke, M
    Smirnov, VA
    NUCLEAR PHYSICS B, 1998, 522 (1-2) : 321 - 344
  • [8] The physics and the mixed Hodge structure of Feynman integrals
    Vanhove, Pierre
    STRING-MATH 2013, 2014, 88 : 161 - 194
  • [9] Using Functional Equations to Calculate Feynman Integrals
    O. V. Tarasov
    Theoretical and Mathematical Physics, 2019, 200 : 1205 - 1221
  • [10] Feynman integrals of functionals of exponential form with a polynomial exponent
    A. K. Kravtseva
    Moscow University Mathematics Bulletin, 2012, 67 (5-6) : 233 - 235