A statistical downscaling procedure based on an analogue technique is used to determine projections for future climate change in western France. Three ocean and atmosphere coupled models are used as the starting point of the regionalization technique. Models' climatology and day to day variability are found to reproduce the broad main characteristics seen in the reanalyses. The response of the coupled models to a similar CO2 increase scenario exhibit marked differences for mean sea-level pressure: precipitable water and temperature show arguably less spread. Using the reanalysis fields as predictors. the statistical model parameters are set for daily extreme temperatures and rain occurrences for seventeen stations in western France. The technique shows some amount of skill for all three predictands and across all seasons but failed to give reliable estimates of rainfall amounts. The quality of both local observations and large-scale predictors has an impact on the statistical model skill. The technique is partially able to reproduce the observed climatic trends and inter annual variability, showing the sensitivity of the analogue approach to changed climatic conditions albeit an incomplete explained variance by the statistical technique. The model is applied to the coupled model control simulations and the gain compared with direct model grid-average outputs is shown to be substantial at station level. The method is then applied to altered climate conditions; the impact of large-scale model uncertain responses and model sensitivities are quantified using the three coupled models. The warming in the downscaled projections are reduced compared with their global model counterparts.