Graph states of prime-power dimension from generalized CNOT quantum circuit

被引:6
作者
Chen, Lin [1 ,2 ]
Zhou, D. L. [3 ,4 ]
机构
[1] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
[2] Beihang Univ, Int Res Inst Multidisciplinary Sci, Beijing 100191, Peoples R China
[3] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
关键词
D O I
10.1038/srep27135
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We construct multipartite graph states whose dimension is the power of a prime number. This is realized by the finite field, as well as the generalized controlled-NOT quantum circuit acting on two qudits. We propose the standard form of graph states up to local unitary transformations and particle permutations. The form greatly simplifies the classification of graph states as we illustrate up to five qudits. We also show that some graph states are multipartite maximally entangled states in the sense that any bipartition of the system produces a bipartite maximally entangled state. We further prove that 4-partite maximally entangled states exist when the dimension is an odd number at least three or a multiple of four.
引用
收藏
页数:13
相关论文
共 19 条
  • [1] Entanglement distillation protocols and number theory
    Bombin, H
    Martin-Delgado, MA
    [J]. PHYSICAL REVIEW A, 2005, 72 (03):
  • [2] Generalized cluster states based on finite groups
    Brell, Courtney G.
    [J]. NEW JOURNAL OF PHYSICS, 2015, 17
  • [3] Persistent entanglement in arrays of interacting particles
    Briegel, HJ
    Raussendorf, R
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (05) : 910 - 913
  • [4] Inequalities for the ranks of multipartite quantum states
    Cadney, Josh
    Huber, Marcus
    Linden, Noah
    Winter, Andreas
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 452 : 153 - 171
  • [5] Cui S. X., 2015, ARXIVQUANTPH15020719
  • [6] Maximally Entangled Set of Multipartite Quantum States
    de Vicente, J. I.
    Spee, C.
    Kraus, B.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (11)
  • [7] Schmidt measure as a tool for quantifying multiparticle entanglement
    Eisert, Jens
    Briegel, Hans J.
    [J]. Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 64 (02): : 1 - 022306
  • [8] Maximally multipartite entangled states
    Facchi, Paolo
    Florio, Giuseppe
    Parisi, Giorgio
    Pascazio, Saverio
    [J]. PHYSICAL REVIEW A, 2008, 77 (06):
  • [9] Maximally entangled states of four nonbinary particles
    Gaeta, Mario
    Klimov, Andrei
    Lawrence, Jay
    [J]. PHYSICAL REVIEW A, 2015, 91 (01):
  • [10] All maximally entangled four-qubit states
    Gour, Gilad
    Wallach, Nolan R.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (11)