Graph states of prime-power dimension from generalized CNOT quantum circuit
被引:6
作者:
Chen, Lin
论文数: 0引用数: 0
h-index: 0
机构:
Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
Beihang Univ, Int Res Inst Multidisciplinary Sci, Beijing 100191, Peoples R ChinaBeihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
Chen, Lin
[1
,2
]
Zhou, D. L.
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R ChinaBeihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
Zhou, D. L.
[3
,4
]
机构:
[1] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
[2] Beihang Univ, Int Res Inst Multidisciplinary Sci, Beijing 100191, Peoples R China
[3] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
来源:
SCIENTIFIC REPORTS
|
2016年
/
6卷
关键词:
D O I:
10.1038/srep27135
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
We construct multipartite graph states whose dimension is the power of a prime number. This is realized by the finite field, as well as the generalized controlled-NOT quantum circuit acting on two qudits. We propose the standard form of graph states up to local unitary transformations and particle permutations. The form greatly simplifies the classification of graph states as we illustrate up to five qudits. We also show that some graph states are multipartite maximally entangled states in the sense that any bipartition of the system produces a bipartite maximally entangled state. We further prove that 4-partite maximally entangled states exist when the dimension is an odd number at least three or a multiple of four.