Sobolev orthogonal polynomials on product domains

被引:16
作者
Fernandez, Lidia [1 ]
Marcellan, Francisco [2 ,3 ]
Perez, Teresa E. [1 ]
Pinar, Miguel A. [1 ]
Xu, Yuan [4 ]
机构
[1] Univ Granada, Dept Matemat Aplicada, E-18071 Granada, Spain
[2] Inst Ciencias Matemat ICMAT, Madrid, Spain
[3] Univ Carlos III Madrid, Dept Matemat, E-28903 Getafe, Spain
[4] Univ Oregon, Dept Math, Eugene, OR 97403 USA
关键词
Classical orthogonal polynomials; Orthogonal polynomials in two variables; Sobolev inner products; Product domain;
D O I
10.1016/j.cam.2014.09.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Orthogonal polynomials on the product domain [a(1), b(1)] x [a(2), b(2)] with respect to the inner product < f, g >(s) = integral(b1)(a1) integral(b2)(a2) del f(x, y) center dot del g(x, y) w(1)(x)w(2)(y) dx dy +lambda f(c(1), c(2))g(c(1), c(2)) are constructed, where w(i) is a weight function on [a(i), b(i)] for i = 1, 2, lambda > 0, and (c(1), c(2)) is a fixed point. The main result shows how an orthogonal basis for such an inner product can be constructed for certain weight functions, in particular, for product Laguerre and product Gegenbauer weight functions, which serve as primary examples. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:202 / 215
页数:14
相关论文
共 9 条
[1]  
KWON KH, 1997, COMMUN KOREAN MATH S, V12, P603
[2]  
Li H., 2015, SIAM J NUMER ANAL
[3]   Laguerre-Sobolev orthogonal polynomials [J].
Marcellan, F ;
Perez, TE ;
Pinar, MA .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 71 (02) :245-265
[4]   CLASSICAL ORTHOGONAL POLYNOMIALS - A FUNCTIONAL-APPROACH [J].
MARCELLAN, F ;
BRANQUINHO, A ;
PETRONILHO, J .
ACTA APPLICANDAE MATHEMATICAE, 1994, 34 (03) :283-303
[5]  
Marcellan F., 1994, P C NONL NUM METH RA, P71
[6]  
Marcelldn F., 2015, EXPO MATH
[7]  
Szego G., 1975, AM MATH SOC C PUBL, V23
[8]  
Xu Y., 2014, ENCY MATH ITS APPL, V155
[9]   Sobolev orthogonal polynomials defined via gradient on the unit ball [J].
Xu, Yuan .
JOURNAL OF APPROXIMATION THEORY, 2008, 152 (01) :52-65