Radiomic analysis of DCE-MRI for prediction of response to neoadjuvant chemotherapy in breast cancer patients

被引:108
|
作者
Fan, Ming [1 ]
Wu, Guolin [1 ]
Cheng, Hu [1 ]
Zhang, Juan [2 ]
Shao, Guoliang [2 ]
Li, Lihua [1 ]
机构
[1] Hangzhou Dianzi Univ, Inst Biomed Engn & Instrumentat, Hangzhou 310018, Zhejiang, Peoples R China
[2] Zhejiang Canc Hosp, Hangzhou 310010, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Breast cancer; Neoadjuvant chemotherapy; Dynamic enhancement MRI; Image features; BACKGROUND PARENCHYMAL ENHANCEMENT; CONTRALATERAL NORMAL BREAST; TUMOR RESPONSE; ASSOCIATION; DIAGNOSIS; BENEFITS; THERAPY; IMAGES;
D O I
10.1016/j.ejrad.2017.06.019
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives: To enhance the accurate prediction of the response to neoadjuvant chemotherapy (NAC) in breast cancer patients by using a quantitative analysis of dynamic enhancement magnetic resonance imaging (DCEMRI). Materials and methods: A dataset of 57 cancer patients with breast DCE-MR images acquired before NAC was used. Among them, 47 patients were Responders, and 10 patients were non-Responders based on the RECIST criteria. The breast regions were segmented on the MR images, and a total of 158 radiomic features were computed to represent the morphologic, dynamic, and the texture of the tumors as well as the background parenchymal features. The optimal subset of features was selected using evolutionary based Wrapper Subset Evaluator. The classifier was trained and tested using a leave-one-out cross-validation (LOOCV) method to classify Responder and non-Responder cases. The area under a receiver operating characteristic curve (AUC) was computed to assess the classifier performance. An additional independent dataset with 46 patients was also included to validate the results. Results: The evolutionary algorithm (EA)-based method identified optimal subsets comprising 12 image features that were fit for classification for the main cohort. Following the same feature selection procedure, the independent validation dataset produced 11 image features, 7 of which were identical to those from the main cohort. The classifier based on the features yield a LOOCV AUC of 0.910 and 0.874 for the main and the reproducibility study cohort, respectively. If the optimal features in the main cohort were utilized to test performance on the reproducibility cohort, the classifier generated an AUC of 0.713. While the features developed in the reproducibility cohort were applied to test the main cohort, the classifier achieved an AUC of 0.683. The AUC of the averaged receiver operating characteristic (ROC) curve for the two data cohort was 0.703. Conclusions: This study demonstrated that quantitative analyses of radiomic features from pretreatment breast DCE-MRI data could be used as valuable image markers that are associated with tumor response to NAC.
引用
收藏
页码:140 / 147
页数:8
相关论文
共 50 条
  • [31] Radiomics of MRI for the Prediction of the Pathological Response to Neoadjuvant Chemotherapy in Breast Cancer Patients: A Single Referral Centre Analysis
    Pesapane, Filippo
    Rotili, Anna
    Botta, Francesca
    Raimondi, Sara
    Bianchini, Linda
    Corso, Federica
    Ferrari, Federica
    Penco, Silvia
    Nicosia, Luca
    Bozzini, Anna
    Pizzamiglio, Maria
    Origgi, Daniela
    Cremonesi, Marta
    Cassano, Enrico
    CANCERS, 2021, 13 (17)
  • [32] Breast DCE-MRI Kinetic Heterogeneity Tumor Markers: Preliminary Associations With Neoadjuvant Chemotherapy Response
    Ashraf, Ahmed
    Gaonkar, Bilwaj
    Mies, Carolyn
    DeMichele, Angela
    Rosen, Mark
    Davatzikos, Christos
    Kontos, Despina
    TRANSLATIONAL ONCOLOGY, 2015, 8 (03): : 154 - 162
  • [33] Quantification of Tumor Changes during Neoadjuvant Chemotherapy with Longitudinal Breast DCE-MRI Registration
    Wu, Jia
    Ou, Yangming
    Weinstein, Susan P.
    Conant, Emily F.
    Yu, Ning
    Hoshmand, Vahid
    Keller, Brad
    Ashraf, Ahmed B.
    Rosen, Mark
    DeMichele, Angela
    Davatzikos, Christos
    Kontos, Despina
    MEDICAL IMAGING 2015: COMPUTER-AIDED DIAGNOSIS, 2015, 9414
  • [34] DCE-MRI and parametric imaging in monitoring response to neoadjuvant chemotherapy in breast carcinoma: a preliminary report
    Sharma, Anjna
    Sharma, Sanjiv
    Sood, Shikha
    Seam, Rajeev K.
    Sharma, Mukesh
    Fotedar, Vikas
    POLISH JOURNAL OF RADIOLOGY, 2018, 83 : 220 - 228
  • [35] Analysis of DCE-MRI Features in Tumor for Prediction of the Prognosis in Breast Cancer
    Liu, Bin
    Fan, Ming
    Zheng, Shuo
    Li, Lihua
    MEDICAL IMAGING 2019: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2019, 10954
  • [36] Prognostic value of DCE-MRI in breast cancer patients undergoing neoadjuvant chemotherapy: a comparison with traditional survival indicators
    Martin D. Pickles
    Martin Lowry
    David J. Manton
    Lindsay W. Turnbull
    European Radiology, 2015, 25 : 1097 - 1106
  • [37] Early Prediction of Breast Cancer Therapy Response using Multiresolution Fractal Analysis of DCE-MRI Parametric Maps
    Machireddy, Archana
    Thibault, Guillaume
    Tudorica, Alina
    Afzal, Aneela
    Mishal, May
    Kemmer, Kathleen
    Naik, Arpana
    Troxell, Megan
    Goranson, Eric
    Oh, Karen
    Roy, Nicole
    Jafarian, Neda
    Holtorf, Megan
    Huang, Wei
    Song, Xubo
    TOMOGRAPHY, 2019, 5 (01) : 90 - 98
  • [38] Radiomic signatures derived from multiparametric MRI for the pretreatment prediction of response to neoadjuvant chemotherapy in breast cancer
    Bian, Tiantian
    Wu, Zengjie
    Lin, Qing
    Wang, Haibo
    Ge, Yaqiong
    Duan, Shaofeng
    Fu, Guangming
    Cui, Chunxiao
    Su, Xiaohui
    BRITISH JOURNAL OF RADIOLOGY, 2020, 93 (1115)
  • [39] Breast cancer classification through multivariate radiomic time series analysis in DCE-MRI sequences
    Prinzi, Francesco
    Orlando, Alessia
    Gaglio, Salvatore
    Vitabile, Salvatore
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
  • [40] Quantitative DCE-MRI for prediction of pathological complete response following neoadjuvant treatment for locally advanced breast cancer: the impact of breast cancer subtypes on the diagnostic accuracy
    Drisis, Stylianos
    Metens, Thierry
    Ignatiadis, Michael
    Stathopoulos, Konstantinos
    Chao, Shih-Li
    Lemort, Marc
    EUROPEAN RADIOLOGY, 2016, 26 (05) : 1474 - 1484