Engineering Iron-Nickel Nanoparticles for Magnetically Induced CO2 Methanation in Continuous Flow

被引:57
|
作者
De Masi, Deborah [1 ]
Asensio, Juan M. [1 ]
Fazzini, Pier-Francesco [1 ]
Lacroix, Lise-Marie [1 ]
Chaudret, Bruno [1 ]
机构
[1] Univ Toulouse, LPCNO, INSA, CNRS,UMR 5215, 135 Ave Rangueil, F-31077 Toulouse, France
关键词
CO2; methanation; heterogeneous catalysis; iron-nickel; magnetic properties; nanoparticles; NIFE NANOPARTICLES; HYDROGENATION; CATALYSTS; ENHANCEMENT; CARBIDE; HEAT; GAS;
D O I
10.1002/anie.201913865
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Induction heating of magnetic nanoparticles (NPs) is a method to activate heterogeneous catalytic reactions. It requires nano-objects displaying high heating power and excellent catalytic activity. Here, using a surface engineering approach, bimetallic NPs are used for magnetically induced CO2 methanation, acting both as heating agent and catalyst. The organometallic synthesis of Fe30Ni70 NPs displaying high heating powers at low magnetic field amplitudes is described. The NPs are active but only slightly selective for CH4 after deposition on SiRAlOx owing to an iron-rich shell (25 mL min(-1), 25 mT, 300 kHz, conversion 71 %, methane selectivity 65 %). Proper surface engineering consisting of depositing a thin Ni layer leads to Fe30Ni70@Ni NPs displaying a very high activity for CO2 hydrogenation and a full selectivity. A quantitative yield in methane is obtained at low magnetic field and mild conditions (25 mL min(-1), 19 mT, 300 kHz, conversion 100 %, methane selectivity 100 %).
引用
收藏
页码:6187 / 6191
页数:5
相关论文
共 50 条
  • [21] Hydrogenation of CO2 on Nickel–Iron Nanoparticles Under Sunlight Irradiation
    Alberto V. Puga
    Avelino Corma
    Topics in Catalysis, 2018, 61 : 1810 - 1819
  • [22] Nickel catalysts supported on silica microspheres for CO2 methanation
    Gac, Wojciech
    Zawadzki, Witold
    Slowik, Grzegorz
    Sienkiewicz, Andrzej
    Kierys, Agnieszka
    MICROPOROUS AND MESOPOROUS MATERIALS, 2018, 272 : 79 - 91
  • [23] Nickel-magnesium-modified cenospheres for CO2 methanation
    Summa, Paulina
    Montero, David
    Samojeden, Bogdan
    Motak, Monika
    Da Costa, Patrick
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (65) : 27944 - 27960
  • [24] Nickel Nanoparticles Encapsulated in Microporous Graphenelike Carbon (Ni@MGC) as Catalysts for CO2 Methanation
    Wu, Junbiao
    Jin, Zhenshun
    Wang, Bo
    Han, Yide
    Xu, Yan
    Liang, Zhiqiang
    Wang, Zhuopeng
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (45) : 20536 - 20542
  • [25] STUDIES OF THE INTERFACIAL KINETICS OF THE REACTION OF CO2 WITH LIQUID IRON-NICKEL ALLOYS AT 1873-K
    CRAMB, AW
    BELTON, GR
    METALLURGICAL TRANSACTIONS B-PROCESS METALLURGY, 1989, 20 (05): : 755 - 756
  • [26] METHANATION OF CO2 AND CO ON SUPPORTED NICKEL-BASED COMPOSITE CATALYSTS
    INUI, T
    FUNABIKI, M
    SUEHIRO, M
    SEZUME, T
    JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS I, 1979, 75 : 787 - 802
  • [27] Mechanism of photocatalytic CO2 methanation on ultrafine Rh nanoparticles
    Dai, Xinyan
    Sun, Yugang
    NANOSCALE HORIZONS, 2024, 9 (04) : 627 - 636
  • [28] Highly Selective, Iron-Driven CO2 Methanation
    Williamson, David L.
    Jones, Matthew D.
    Mattia, Davide
    ENERGY TECHNOLOGY, 2019, 7 (02) : 294 - 306
  • [29] Hydrogenation of CO2 on Nickel-Iron Nanoparticles Under Sunlight Irradiation
    Puga, Alberto V.
    Corma, Avelino
    TOPICS IN CATALYSIS, 2018, 61 (18-19) : 1810 - 1819
  • [30] Continuous CO2 electrolysis using a CO2 exsolution-induced flow cell
    Guobin Wen
    Bohua Ren
    Xin Wang
    Dan Luo
    Haozhen Dou
    Yun Zheng
    Rui Gao
    Jeff Gostick
    Aiping Yu
    Zhongwei Chen
    Nature Energy, 2022, 7 : 978 - 988