Multiple pathways involved in the biosynthesis of anandamide

被引:214
作者
Liu, Jie [1 ]
Wang, Lei [1 ]
Harvey-White, Judith [1 ]
Huang, Bill X. [2 ]
Kim, Hee-Yong [2 ]
Luquet, Serge [3 ]
Palmiter, Richard D. [3 ]
Krystal, Gerald [4 ]
Rai, Ravi [5 ]
Mahadevan, Anu [5 ]
Razdan, Raj K. [5 ]
Kunos, George [1 ]
机构
[1] NIAAA, Lab Physiol Studies, NIH, Bethesda, MD 20892 USA
[2] NIAAA, Lab Mol Signaling, NIH, Bethesda, MD 20892 USA
[3] Univ Washington, Dept Biochem, Howard Hughes Med Inst, Seattle, WA 98195 USA
[4] British Columbia Canc Agcy, Terry Fox Labs, Vancouver, BC V5Z 4E6, Canada
[5] Organix Inc, Woburn, MA 01801 USA
关键词
anandamide; biosynthesis; N-arachidonoyl phosphatidylethanolamine; glycerophosphoarachidonoyl ethanolamide; phosphoanandamide;
D O I
10.1016/j.neuropharm.2007.05.020
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Endocannabinoids, including anandamide (arachidonoyl ethanolamide) have been implicated in the regulation of a growing number of physiological and pathological processes. Anandamide can be generated from its membrane phospholipid precursor N-arachidonoyl phosphatidylethanolamine (NAPE) through hydrolysis by a phospholipase D (NAPE-PLD). Recent evidence indicates, however, the existence of two additional, parallel pathways. One involves the sequential deacylation of NAPE by alpha,beta-hydrolase 4 (Abhd4) and the subsequent cleavage of glycerophosphate to yield anandamide, and the other one proceeds through phospholipase C-mediated hydrolysis of NAPE to yield phosphoanandamide, which is then dephosphorylated by phosphatases, including the tyrosine phosphatase PTPN22 and the mositol 5' phosphatase SHIP1. Conversion of synthetic NAPE to AEA by brain homogenates from wild-type and NAPE-PLD-/- mice can proceed through both the PLC/phosphatase and Abdh4 pathways, with the former being dominant at shorter (< 10 min) and the latter at longer (60 min) incubations. In macrophages, the endotoxin-induced synthesis of anandamide proceeds uniquely through the phospholipase C/phosphatase pathway. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
[11]   Biosynthesis and metabolic pathways of pivalic acid [J].
Tomáš Řezanka ;
Irena Kolouchová ;
Alena Čejková ;
Karel Sigler .
Applied Microbiology and Biotechnology, 2012, 95 :1371-1376
[12]   Phytohormone biosynthesis and signaling pathways of mosses [J].
Guillory, Ambre ;
Bonhomme, Sandrine .
PLANT MOLECULAR BIOLOGY, 2021, 107 (4-5) :245-277
[13]   Phytohormone biosynthesis and signaling pathways of mosses [J].
Ambre Guillory ;
Sandrine Bonhomme .
Plant Molecular Biology, 2021, 107 :245-277
[14]   Biosynthesis and metabolic pathways of pivalic acid [J].
Rezanka, Tomas ;
Kolouchova, Irena ;
Cejkova, Alena ;
Sigler, Karel .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2012, 95 (06) :1371-1376
[15]   Biosynthesis of anandamide and N-palmitoylethanolamine by sequential actions of phospholipase A2 and lysophospholipase D [J].
Sun, YX ;
Tsuboi, K ;
Okamoto, Y ;
Tonai, T ;
Murakami, M ;
Kudo, I ;
Ueda, N .
BIOCHEMICAL JOURNAL, 2004, 380 :749-756
[16]   Characterization of AmtA, an amidinotransferase involved in the biosynthesis of phaseolotoxins [J].
Li, Mi ;
Chen, Li ;
Deng, Zixin ;
Zhao, Changming .
FEBS OPEN BIO, 2016, 6 (06) :603-609
[17]   Characterization of three amidinotransferases involved in the biosynthesis of ketomemicins [J].
Ogasawara, Yasushi ;
Fujimori, Michiko ;
Kawata, Junpei ;
Dairi, Tohru .
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2016, 26 (15) :3662-3664
[18]   Investigation of microorganisms involved in biosynthesis of the kefir grain [J].
Wang, Sheng-Yao ;
Chen, Kun-Nan ;
Lo, Yung-Ming ;
Chiang, Ming-Lun ;
Chen, Hsi-Chia ;
Liu, Je-Ruei ;
Chen, Ming-Ju .
FOOD MICROBIOLOGY, 2012, 32 (02) :274-285
[19]   The regulatory genes involved in spiramycin and bitespiramycin biosynthesis [J].
Dai, Jianlu ;
Wang, Yiguang ;
Liu, Juanjuan ;
He, Weiqing .
MICROBIOLOGICAL RESEARCH, 2020, 240
[20]   Enzymatic Pyran Formation Involved in Xiamenmycin Biosynthesis [J].
He, Bei-Bei ;
Zhou, Ting ;
Bu, Xu-Liang ;
Weng, Jing-Yi ;
Xu, Jun ;
Lin, Shuangjun ;
Zheng, Jian-Ting ;
Zhao, Yi-Lei ;
Xu, Min Juan .
ACS CATALYSIS, 2019, 9 (06) :5391-5399