A New Generalization of von Neumann Relative Entropy

被引:1
|
作者
Li, Jing [1 ]
Cao, Huaixin [1 ]
机构
[1] Shaanxi Normal Univ, Sch Math & Informat Sci, Xian 710062, Shaanxi, Peoples R China
关键词
f-von Neumann relative entropy; f-von Neumann entropy; TRACE FUNCTIONS; QUANTUM; ENTANGLEMENT; INFORMATION;
D O I
10.1007/s10773-017-3503-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In quantum information, von Neumann relative entropy has a great applications and operational interpretations in diverse fields, and von Neumann entropy is an important tool for describing the uncertainty of a quantum state. In this paper, we generalize the classical von Neumann relative entropy S(rho||sigma) and von Neumann entropy S(rho) to f-von Neumann relative entropy and f-von Neumann entropy induced by a logarithm-like function f, respectively, and explore their properties. We prove that is nonnegative and then prove that has nonnegativity, boundedness, concavity, subadditivity and so on. Later, we show the stability and continuity of the with respect to the trace distance. In the case that f(x) = -log x, the resulted entropies reduce the classical von Neumann relative entropy and von Neumann entropy, respectively. This means that our results extend the usual results to a more general setting and then have some potential applications in quantum information.
引用
收藏
页码:3405 / 3424
页数:20
相关论文
共 50 条
  • [31] Renyi Generalization of the Accessible Entanglement Entropy
    Barghathi, Hatem
    Herdman, C. M.
    Del Maestro, Adrian
    PHYSICAL REVIEW LETTERS, 2018, 121 (15)
  • [32] State Convertibility in the von Neumann Algebra Framework
    Crann, Jason
    Kribs, David W.
    Levene, Rupert H.
    Todorov, Ivan G.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 378 (02) : 1123 - 1156
  • [33] Asymptotic Equipartition Theorems in von Neumann Algebras
    Fawzi, Omar
    Gao, Li
    Rahaman, Mizanur
    ANNALES HENRI POINCARE, 2025,
  • [34] Conditional steering under the von Neumann scenario
    Mukherjee, Kaushiki
    Paul, Biswajit
    Karmakar, Sumana
    Sarkar, Debasis
    Mukherjee, Amit
    Bhattacharya, Some Sankar
    Roy, Arup
    PHYSICAL REVIEW A, 2017, 96 (02)
  • [35] On the asymptotic scaling of the von Neumann entropy in quasifree fermionic right mover/left mover systems
    Aschbacher, Walter H.
    JOURNAL OF MATHEMATICAL PHYSICS, 2025, 66 (03)
  • [36] Quantum phase transition in even-even molybdenum isotopes using von Neumann entropy
    Amiri, N.
    Sayedi, M.
    Ghapanvari, M.
    Jafarizadeh, M. A.
    CANADIAN JOURNAL OF PHYSICS, 2025,
  • [37] Measurement-induced nonlocality based on the relative entropy
    Xi, Zhengjun
    Wang, Xiaoguang
    Li, Yongming
    PHYSICAL REVIEW A, 2012, 85 (04):
  • [38] Finite-temperature fidelity and von Neumann entropy in the honeycomb spin lattice with quantum Ising interaction
    Dai, Yan-Wei
    Shi, Qian-Qian
    Cho, Sam Young
    Batchelor, Murray T.
    Zhou, Huan-Qiang
    PHYSICAL REVIEW B, 2017, 95 (21)
  • [39] Chain Rule for the Quantum Relative Entropy
    Fang, Kun
    Fawzi, Omar
    Renner, Renato
    Sutter, David
    PHYSICAL REVIEW LETTERS, 2020, 124 (10)
  • [40] On quantum quasi-relative entropy
    Vershynina, Anna
    REVIEWS IN MATHEMATICAL PHYSICS, 2019, 31 (07)