A New Generalization of von Neumann Relative Entropy

被引:1
|
作者
Li, Jing [1 ]
Cao, Huaixin [1 ]
机构
[1] Shaanxi Normal Univ, Sch Math & Informat Sci, Xian 710062, Shaanxi, Peoples R China
关键词
f-von Neumann relative entropy; f-von Neumann entropy; TRACE FUNCTIONS; QUANTUM; ENTANGLEMENT; INFORMATION;
D O I
10.1007/s10773-017-3503-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In quantum information, von Neumann relative entropy has a great applications and operational interpretations in diverse fields, and von Neumann entropy is an important tool for describing the uncertainty of a quantum state. In this paper, we generalize the classical von Neumann relative entropy S(rho||sigma) and von Neumann entropy S(rho) to f-von Neumann relative entropy and f-von Neumann entropy induced by a logarithm-like function f, respectively, and explore their properties. We prove that is nonnegative and then prove that has nonnegativity, boundedness, concavity, subadditivity and so on. Later, we show the stability and continuity of the with respect to the trace distance. In the case that f(x) = -log x, the resulted entropies reduce the classical von Neumann relative entropy and von Neumann entropy, respectively. This means that our results extend the usual results to a more general setting and then have some potential applications in quantum information.
引用
收藏
页码:3405 / 3424
页数:20
相关论文
共 50 条
  • [21] Global quantum discord and von Neumann entropy in multipartite two-level atomic systems
    Ibrahim, M.
    Usman, M.
    Khan, Khalid
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2023, 21 (01)
  • [22] New holographic generalization of entanglement entropy
    Nakata, Yoshifumi
    Takayanagi, Tadashi
    Taki, Yusuke
    Tamaoka, Kotaro
    Wei, Zixia
    PHYSICAL REVIEW D, 2021, 103 (02)
  • [23] Enhancing von Neumann entropy by chaos in spin-orbit entanglement
    Liu, Chen-Rong
    Yu, Pei
    Chen, Xian-Zhang
    Xu, Hong-Ya
    Huang, Liang
    Lai, Ying-Cheng
    CHINESE PHYSICS B, 2019, 28 (10)
  • [24] Von Neumann entropy and bipartite number fluctuation in quantum phase transitions
    Chung, Myung-Hoon
    Landau, D. P.
    PHYSICAL REVIEW B, 2011, 83 (11):
  • [25] On the von Neumann entropy of a bath linearly coupled to a driven quantum system
    Aurell, Erik
    Eichhorn, Ralf
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [26] Symmetric Laplacians, quantum density matrices and their Von-Neumann entropy
    Simmons, David E.
    Coon, Justin P.
    Datta, Animesh
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 532 : 534 - 549
  • [27] Close-to-optimal continuity bound for the von Neumann entropy and other quasi-classical applications of the Alicki-Fannes-Winter technique
    Shirokov, Maksim
    LETTERS IN MATHEMATICAL PHYSICS, 2023, 113 (06)
  • [28] Wigner rotations, bell states, and Lorentz invariance of entanglement and von Neumann entropy
    Soo, C
    Lin, CCY
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2004, 2 (02) : 183 - 200
  • [29] Von Neumann entropy and entropy squeezing of a two-level atom and the superposition of squeezed displaced fock states
    G. M. Abd Al-Kader
    A.-S. F. Obada
    Journal of Russian Laser Research, 2008, 29 : 398 - 407
  • [30] Von Neumann entropy and entropy squeezing of a two-level atom and the superposition of squeezed displaced fock states
    Al-Kader, G. M. Abd
    Obada, A. -S. F.
    JOURNAL OF RUSSIAN LASER RESEARCH, 2008, 29 (04) : 398 - 407