A New Generalization of von Neumann Relative Entropy

被引:1
|
作者
Li, Jing [1 ]
Cao, Huaixin [1 ]
机构
[1] Shaanxi Normal Univ, Sch Math & Informat Sci, Xian 710062, Shaanxi, Peoples R China
关键词
f-von Neumann relative entropy; f-von Neumann entropy; TRACE FUNCTIONS; QUANTUM; ENTANGLEMENT; INFORMATION;
D O I
10.1007/s10773-017-3503-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In quantum information, von Neumann relative entropy has a great applications and operational interpretations in diverse fields, and von Neumann entropy is an important tool for describing the uncertainty of a quantum state. In this paper, we generalize the classical von Neumann relative entropy S(rho||sigma) and von Neumann entropy S(rho) to f-von Neumann relative entropy and f-von Neumann entropy induced by a logarithm-like function f, respectively, and explore their properties. We prove that is nonnegative and then prove that has nonnegativity, boundedness, concavity, subadditivity and so on. Later, we show the stability and continuity of the with respect to the trace distance. In the case that f(x) = -log x, the resulted entropies reduce the classical von Neumann relative entropy and von Neumann entropy, respectively. This means that our results extend the usual results to a more general setting and then have some potential applications in quantum information.
引用
收藏
页码:3405 / 3424
页数:20
相关论文
共 50 条
  • [1] Von Neumann Entropy from Unitarity
    Boes, Paul
    Eisert, Jens
    Gallego, Rodrigo
    Mueller, Markus P.
    Wilming, Henrik
    PHYSICAL REVIEW LETTERS, 2019, 122 (21)
  • [2] Von Neumann entropy in a dispersive cavity
    Deb, Ram Narayan
    JOURNAL OF MODERN OPTICS, 2021, 68 (19) : 1054 - 1058
  • [3] Perturbation theory of von Neumann entropy
    Chen Xiao-Yu
    CHINESE PHYSICS B, 2010, 19 (04)
  • [4] Von Neumann Entropy in QFT
    Longo, Roberto
    Xu, Feng
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 381 (03) : 1031 - 1054
  • [6] The von Neumann Entropy for Mixed States
    Anaya-Contreras, Jorge A.
    Moya-Cessa, Hector M.
    Zuniga-Segundo, Arturo
    ENTROPY, 2019, 21 (01):
  • [7] von Neumann entropy and entropy production of a damped harmonic oscillator
    Weiderpass, G. A.
    Caldeira, A. O.
    PHYSICAL REVIEW E, 2020, 102 (03)
  • [8] The smooth entropy formalism for von Neumann algebras
    Berta, Mario
    Furrer, Fabian
    Scholz, Volkher B.
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (01)
  • [9] SCALING OF VON NEUMANN ENTROPY AT THE ANDERSON TRANSITION
    Chakravarty, Sudip
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (12-13): : 1823 - 1840
  • [10] Constrained minimizers of the von Neumann entropy and their characterization
    Duboscq, Romain
    Pinaud, Olivier
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (03)