Redox-active cathode interphases in solid-state batteries

被引:229
作者
Koerver, Raimund [1 ,2 ]
Walther, Felix [1 ,2 ]
Ayguen, Isabel [1 ,2 ]
Sann, Joachim [1 ,2 ]
Dietrich, Christian [1 ,2 ]
Zeier, Wolfgang G. [1 ,2 ]
Janek, Juergen [1 ,2 ]
机构
[1] Justus Liebig Univ Giessen, Inst Phys Chem, Heinrich Buff Ring 17, D-35392 Giessen, Germany
[2] Justus Liebig Univ Giessen, Ctr Mat Res LaMa, Heinrich Buff Ring 16, D-35392 Giessen, Germany
关键词
LITHIUM SECONDARY BATTERIES; LI-ION BATTERY; LICOO2; ELECTRODE; COATED LICOO2; SULFIDE; CHALLENGES; CONDUCTOR; INTERFACE; MICROSTRUCTURE; LI10GEP2S12;
D O I
10.1039/c7ta07641j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
All-solid-state batteries are expected to provide a next-generation solution for energy storage. Employing fast conducting lithium thiophosphates as a replacement for liquid electrolytes in conventional lithium ion batteries has shown great promise, however, capacity fading and the underlying interfacial side reactions of thiophosphates and cathode active materials are not yet understood well. In this study, we charge solid-state batteries to different cut-off potentials and find the formation of a redox-active resistive layer in the solid electrolyte, which impedes the conductivity depending on the state-of-charge of the battery. Using electrochemical impedance spectroscopy as well as depth profiling with X-ray photoelectron spectroscopy we find a thick passivation layer at the current collector and decomposition products within the cathode composite. In addition, an in situ electrochemical experiment during X-ray photoelectron spectroscopy shows that the solid electrolyte is redox active at the cathode/solid electrolyte interface in solid-state batteries. This work highlights the importance of protecting interface layers at the current collector, and the influence of the resulting electric potential drop, as well as provides insight into the redox chemistry of lithium conducting thiophosphates.
引用
收藏
页码:22750 / 22760
页数:11
相关论文
共 51 条
  • [1] [Anonymous], J ELECTROCERAMICS
  • [2] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [3] Redox activity of argyrodite Li6PS5Cl electrolyte in all-solid-state Li-ion battery: An XPS study
    Auvergniot, Jeremie
    Cassel, Alice
    Foix, Dominique
    Viallet, Virgine
    Seznec, Vincent
    Dedryvere, Remi
    [J]. SOLID STATE IONICS, 2017, 300 : 78 - 85
  • [4] BREC R, 1983, REV CHIM MINER, V20, P295
  • [5] Synthesis, Structural Characterization, and Lithium Ion Conductivity of the Lithium Thiophosphate Li2P2S6
    Dietrich, Christian
    Weber, Dominik A.
    Culver, Sean
    Senyshyn, Anatoliy
    Sedlmaier, Stefan J.
    Indris, Sylvio
    Janek, Juergen
    Zeier, Wolfgang G.
    [J]. INORGANIC CHEMISTRY, 2017, 56 (11) : 6681 - 6687
  • [6] Local Structural Investigations, Defect Formation, and Ionic Conductivity of the Lithium Ionic Conductor Li4P2S6
    Dietrich, Christian
    Sadowski, Marcel
    Sicolo, Sabrina
    Weber, Dominik A.
    Sedlmaier, Stefan J.
    Weldert, Kai S.
    Indris, Sylvio
    Albe, Karsten
    Janek, Juergen
    Zeier, Wolfgang G.
    [J]. CHEMISTRY OF MATERIALS, 2016, 28 (23) : 8764 - 8773
  • [7] Gelius K., 1970, PHYS SCR, V2, P70
  • [8] Rechargeable batteries: challenges old and new
    Goodenough, John B.
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (06) : 2019 - 2029
  • [9] Challenges for Rechargeable Li Batteries
    Goodenough, John B.
    Kim, Youngsik
    [J]. CHEMISTRY OF MATERIALS, 2010, 22 (03) : 587 - 603
  • [10] Structural and Electronic-State Changes of a Sulfide Solid Electrolyte during the Li Deinsertion-Insertion Processes
    Hakari, Takashi
    Deguchi, Minako
    Mitsuhara, Kei
    Ohta, Toshiaki
    Saita, Kohei
    Orikasa, Yuki
    Uchimoto, Yoshiharu
    Kowada, Yoshiyuki
    Hayashi, Akitoshi
    Tatsumisago, Masahiro
    [J]. CHEMISTRY OF MATERIALS, 2017, 29 (11) : 4768 - 4774