Scaling of Transient Particle-Fluid Heat Transfer in Brownian Motion

被引:2
作者
Martin, Michael James [1 ]
机构
[1] Louisiana State Univ, Dept Mech Engn, Baton Rouge, LA 70803 USA
关键词
THERMAL-CONDUCTIVITY; NANOFLUIDS;
D O I
10.2514/1.51769
中图分类号
O414.1 [热力学];
学科分类号
摘要
The scaling of transient particle-fluid heat transfer in Brownian motion is presented. The nanoparticles with an initial temperature Tp,i are introduced into a fluid with an initial temperature Tp,f, then the particles and the fluid will exchange energy until they reach equilibrium. The velocity of the particles due to Brownian motion will be a function of the particle temperature, the Boltzmann constant kb, the particle density, and the particle diameter. The heat transfer equation can be simplified using the first law of thermodynamics. It has been observed that the difference in fluid-particle heat transfer due to particles accelerating and decelerating has a quantifiable effect on nanofluid heat transfer.
引用
收藏
页码:177 / 180
页数:4
相关论文
共 15 条
[1]   Assessment of relevant physical phenomena controlling thermal performance of nanofluids [J].
Bahrami, Majid ;
Yovanovich, M. Michael ;
Culham, J. Richard .
JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2007, 21 (04) :673-680
[2]  
Das SK, 2008, NANOFLUIDS: SCIENCE AND TECHNOLOGY, P1
[3]   Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles [J].
Eastman, JA ;
Choi, SUS ;
Li, S ;
Yu, W ;
Thompson, LJ .
APPLIED PHYSICS LETTERS, 2001, 78 (06) :718-720
[5]  
Incropera F.P., 2006, Fundamentals of Heat and Mass Transfer, V6th
[6]   Role of Brownian motion in the enhanced thermal conductivity of nanofluids [J].
Jang, SP ;
Choi, SUS .
APPLIED PHYSICS LETTERS, 2004, 84 (21) :4316-4318
[7]   Model for heat conduction in nanofluids [J].
Kumar, DH ;
Patel, HE ;
Kumar, VRR ;
Sundararajan, T ;
Pradeep, T ;
Das, SK .
PHYSICAL REVIEW LETTERS, 2004, 93 (14) :144301-1
[8]   A new parameter to control heat transport in nanofluids: Surface charge state of the particle in suspension [J].
Lee, D ;
Kim, JW ;
Kim, BG .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (09) :4323-4328
[9]   Effect of nanofluid on the heat transport capability in an oscillating heat pipe [J].
Ma, HB ;
Wilson, C ;
Borgmeyer, B ;
Park, K ;
Yu, Q ;
Choi, SUS ;
Tirumala, M .
APPLIED PHYSICS LETTERS, 2006, 88 (14)
[10]   Flow Loop Experiments Using Polyalphaolefin Nanofluids [J].
Nelson, Ian C. ;
Banerjee, Debjyoti ;
Ponnappan, Rengasamy .
JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2009, 23 (04) :752-761