Live Video Streaming Optimization Based on Deep Reinforcement Learning

被引:1
作者
Zhang, Xueshuai [1 ]
Hu, Yuxiang [1 ]
Li, Ziyong [1 ]
机构
[1] Natl Digital Switching Syst Engn & Res Ctr, Zhengzhou 450002, Peoples R China
来源
ICMLC 2020: 2020 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING | 2018年
基金
中国国家自然科学基金;
关键词
live video streaming; deep reinforcement learning; adaptive bitrate algorithms; QoE;
D O I
10.1145/3383972.3384058
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Video players employ adaptive bitrate algorithms in video-on-demand (VoD) scenarios to improve user-perceived quality of experience (QoE), whereas performance will obviously decline in live video streaming scenarios. To this end, we propose a novel deep reinforcement learning (DRL) based live video streaming optimization approach. Firstly, we point out the optimization objectives by comparing the difference between the VoD scenario and the live video streaming scenario. Then, according to the optimization conditions, we establish QoE optimization model in combination with a state-of-the-art DRL algorithm. We compare our algorithm with state-of-the-art ABR algorithms in a simulator with real-world video and network trace. Simulation results show that the proposed algorithm improves user experience quality by 5.6% on average, compared with existing algorithms.
引用
收藏
页码:116 / 120
页数:5
相关论文
共 12 条
[1]   Oboe: Auto-tuning Video ABR Algorithms to Network Conditions [J].
Akhtar, Zahaib ;
Nam, Yun Seong ;
Govindan, Ramesh ;
Rao, Sanjay ;
Chen, Jessica ;
Katz-Bassett, Ethan ;
Ribeiro, Bruno ;
Zhan, Jibin ;
Zhang, Hui .
PROCEEDINGS OF THE 2018 CONFERENCE OF THE ACM SPECIAL INTEREST GROUP ON DATA COMMUNICATION (SIGCOMM '18), 2018, :44-58
[2]  
Cisco V., 2018, Cisco Visual Networking Index: Global mobile data traffic forecast update, 2016-2021 white paper, V1
[3]   Understanding the Impact of Video Quality on User Engagement [J].
Dobrian, Florin ;
Awan, Asad ;
Joseph, Dilip ;
Ganjam, Aditya ;
Zhan, Jibin ;
Sekar, Vyas ;
Stoica, Ion ;
Zhang, Hui .
ACM SIGCOMM COMPUTER COMMUNICATION REVIEW, 2011, 41 (04) :362-373
[4]   Video Stream Quality Impacts Viewer Behavior: Inferring Causality Using Quasi-Experimental Designs [J].
Krishnan, S. Shunmuga ;
Sitaraman, Ramesh K. .
IEEE-ACM TRANSACTIONS ON NETWORKING, 2013, 21 (06) :2001-2014
[5]   Neural Adaptive Video Streaming with Pensieve [J].
Mao, Hongzi ;
Netravali, Ravi ;
Alizadeh, Mohammad .
SIGCOMM '17: PROCEEDINGS OF THE 2017 CONFERENCE OF THE ACM SPECIAL INTEREST GROUP ON DATA COMMUNICATION, 2017, :197-210
[6]  
Mnih V, 2016, PR MACH LEARN RES, V48
[7]   Vantage: Optimizing video upload for time-shifted viewing of social live streams [J].
Ray, Devdeep ;
Kosaian, Jack ;
Rashmi, K. V. ;
Seshan, Srinivasan .
SIGCOMM '19 - PROCEEDINGS OF THE ACM SPECIAL INTEREST GROUP ON DATA COMMUNICATION, 2019, :380-393
[8]   BOLA: Near-Optimal Bitrate Adaptation for Online Videos [J].
Spiteri, Kevin ;
Urgaonkar, Rahul ;
Sitaraman, Ramesh K. .
IEEE INFOCOM 2016 - THE 35TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATIONS, 2016,
[9]  
Sullivan G. J., 2014, APPL DIGI IMAG PROCE, V5558, P454
[10]  
Sutton RS, 2018, ADAPT COMPUT MACH LE, P1