Automatic Detection and Segmentation of Lung Lesions using Deep Residual CNNs

被引:4
作者
Carvalho, Joao. B. S. [1 ]
Moreira, Jose-Maria [1 ]
Figueiredo, Mario A. T. [2 ]
Papanikolaou, Nickolas [3 ]
机构
[1] ULisboa, Inst Super Tecn, Champalimaud Fdn, Lisbon, Portugal
[2] ULisboa, Inst Super Tecn, Inst Telecomunicacoes, Lisbon, Portugal
[3] Champalimaud Fdn, Lisbon, Portugal
来源
2019 IEEE 19TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE) | 2019年
关键词
Radiomics; lung cancer; segmentation; deep learning; convolutional neural network; residual connections; CT;
D O I
10.1109/BIBE.2019.00182
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Early detection of lung cancer has shown to significantly improve patient survival. Apart from lesion detection, tumour segmentation is critical for developing radiomics signatures. In this work, we propose a novel hybrid approach for lung lesion detection and segmentation on CT scans, where the segmentation task is assisted by prior detection of regions containing lesions. For the detection task, we introduce a 2.5D residual deep CNN working in a sliding-window fashion, whereas segmentation is tackled by a modified residual U-Net with a weighted-dice plus cross-entropy loss. Experimental results on the LIDC-IDRI dataset and on the lung tumour task dataset within the Medical Segmentation Decathlon show competitive detection performance of the proposed approach (0.902 recall) and superior segmentation capabilities (0.709 dice score). These results confirm the high potential of simpler models, with lower hardware requirements, thus of more general applicability.
引用
收藏
页码:977 / 983
页数:7
相关论文
共 33 条
[1]   Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening [J].
Aberle, Denise R. ;
Adams, Amanda M. ;
Berg, Christine D. ;
Black, William C. ;
Clapp, Jonathan D. ;
Fagerstrom, Richard M. ;
Gareen, Ilana F. ;
Gatsonis, Constantine ;
Marcus, Pamela M. ;
Sicks, JoRean D. .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (05) :395-409
[2]  
[Anonymous], 2012, Boosting. Adaptive Computation and Machine Learning
[3]  
[Anonymous], RADIOLOGY
[4]  
[Anonymous], 2015, Nature, DOI [10.1038/nature14539, DOI 10.1038/NATURE14539]
[5]  
[Anonymous], HELLENIC J RADIOLOGY
[6]  
[Anonymous], INT C MED IM COMP CO
[7]  
[Anonymous], P ICML
[8]   Towards an Automatic Lung Cancer Screening System in Low Dose Computed Tomography [J].
Aresta, Guilherme ;
Araujo, Teresa ;
Jacobs, Colin ;
van Ginneken, Bram ;
Cunha, Antonio ;
Ramos, Isabel ;
Campilho, Aurelio .
IMAGE ANALYSIS FOR MOVING ORGAN, BREAST, AND THORACIC IMAGES, 2018, 11040 :310-318
[9]   Lung image database consortium: Developing a resource for the medical imaging research community [J].
Armato, SG ;
McLennan, G ;
McNitt-Gray, MF ;
Meyer, CR ;
Yankelevitz, D ;
Aberle, DR ;
Henschke, CI ;
Hoffman, EA ;
Kazerooni, EA ;
MacMahon, H ;
Reeves, AP ;
Croft, BY ;
Clarke, LP .
RADIOLOGY, 2004, 232 (03) :739-748
[10]   Recommendations for Measuring Pulmonary Nodules at CT: A Statement from the Fleischner Society [J].
Bankier, Alexander A. ;
MacMahon, Heber ;
Goo, Jin Mo ;
Rubin, Geoffrey D. ;
Schaefer-Prokop, Cornelia M. ;
Naidich, David P. .
RADIOLOGY, 2017, 285 (02) :584-600