Role of Surface Structure on the Charge Trapping in TiO2 Photocatalysts

被引:48
作者
Tao, Junguang [1 ]
Batzill, Matthias [1 ]
机构
[1] Univ S Florida, Dept Phys, Tampa, FL 33620 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2010年 / 1卷 / 21期
关键词
TIO2(110) SURFACE; TITANIUM-DIOXIDE; ADSORPTION; PHOTOEMISSION; ORIENTATION; MOLECULES; ACETATE; CU(110); RUTILE; WATER;
D O I
10.1021/jz1013246
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Surface reconstruction of the rutile-TiO2(011)-2 x 1 surface places Ti ions in a distorted square pyramidal coordination environment. This variation of the crystal field compared to the common octahedral symmetry causes the binding energy for excess electrons occupying Ti 3d states to be 0.34 eV higher for the (011)-2 x 1 surface compared to that for the (110) surface. The role of adsorbates in the formation or annihilation of excess charges in TiO2 is studied on the example of acetic acid adsorption. We find that bridge bidentate adsorption on the (110) surface results in extraction of excess charges from the substrate, while monodentate adsorption on the (011)-2 x 1 surface causes net-charge donation to the substrate. Differences in adsorbate-induced charge donation and more importantly binding energy differences of excess charge for the two surfaces may explain the face-dependent photocatalytic activity of rutile TiO2.
引用
收藏
页码:3200 / 3206
页数:7
相关论文
共 50 条
  • [31] Visible Light Trapping against Charge Recombination in FeOx-TiO2 Photonic Crystal Photocatalysts
    Pylarinou, Martha
    Toumazatou, Alexia
    Sakellis, Elias
    Xenogiannopoulou, Evangelia
    Gardelis, Spiros
    Boukos, Nikos
    Dimoulas, Athanasios
    Likodimos, Vlassis
    MATERIALS, 2021, 14 (23)
  • [32] Diffusion and Reaction of Hydrogen on Rutile TiO2(011)-2x1: The Role of Surface Structure
    Tao, Junguang
    Cuan, Qian
    Gong, Xue-Qing
    Batzill, Matthias
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (38) : 20438 - 20446
  • [33] Origin of Charge Trapping in TiO2/Reduced Graphene Oxide Photocatalytic Composites: Insights from Theory
    Gillespie, Peter N. O.
    Martsinovich, Natalia
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (35) : 31909 - 31922
  • [34] Graphene aerogel modified TiO2 photocatalysts with high performances by controllable agglomeration behaviour of TiO2 nanoparticles
    Sun, Yunfei
    Sun, Jiawei
    Que, Miaoling
    Chen, Lixiang
    Chen, Feng
    Tang, Bo
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (25) : 12139 - 12147
  • [35] Comparative study of (N, Fe) doped TiO2 photocatalysts
    Larumbe, S.
    Monge, M.
    Gomez-Polo, C.
    APPLIED SURFACE SCIENCE, 2015, 327 : 490 - 497
  • [36] Niobium Doping Enhances Charge Transport in TiO2 Nanorods
    Wang, Hsin-Yi
    Yang, Hongbin
    Zhang, Liping
    Chen, Jiazang
    Liu, Bin
    CHEMNANOMAT, 2016, 2 (07): : 660 - 664
  • [37] Effect of Surface Structure on the Photoreactivity of TiO2
    Mao, Xinchun
    Wang, Zhiqiang
    Lang, Xiufeng
    Hao, Qunqing
    Wen, Bo
    Dai, Dongxu
    Zhou, Chuanyao
    Liu, Li-Min
    Yang, Xueming
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (11) : 6121 - 6127
  • [38] Highly Efficient Photocatalysts for Surface Hybridization of TiO2 Nanofibers with Carbon Films
    Chang, Guoqing
    Cheng, Zhen
    Warren, Roseanne
    Song, Guoxia
    Shen, Jianyi
    Lin, Liwei
    CHEMPLUSCHEM, 2015, 80 (05): : 827 - 831
  • [39] Carbon nanofibres as substrates for the preparation of TiO2 nanostructured photocatalysts
    Ouzzine, M.
    Lillo-Rodenas, M. A.
    Linares-Solano, A.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2012, 127 : 291 - 299
  • [40] Effect of the electrolyte cations on photoinduced charge transfer at TiO2
    Molinari, A.
    Maldotti, A.
    Amadelli, R.
    CATALYSIS TODAY, 2017, 281 : 71 - 77