Reflection positivity of the random-cluster measure invalidated for noninteger q

被引:5
作者
Biskup, M [1 ]
机构
[1] Catholic Univ Nijmegen, Inst Math, NL-6525 ED Nijmegen, Netherlands
[2] Charles Univ, MFF, Dept Theoret Phys, Prague 18000, Czech Republic
关键词
random-cluster measure; Potts model; reflection positivity;
D O I
10.1023/A:1023076202262
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the random-cluster Ports measure on a lattice torus that weights each connected component by a positive number q. We show, by constructing a counterexample, that this measure is not reflection-positive unless q is integer.
引用
收藏
页码:369 / 375
页数:7
相关论文
共 11 条
[1]  
BISKUP M, COEXISTENCE PARTIALL
[2]   AGGREGATION AND INTERMEDIATE PHASES IN DILUTE SPIN SYSTEMS [J].
CHAYES, L ;
KOTECKY, R ;
SHLOSMAN, SB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 171 (01) :203-232
[3]   Graphical representations and cluster algorithms .1. Discrete spin systems [J].
Chayes, L ;
Machta, J .
PHYSICA A, 1997, 239 (04) :542-601
[4]  
CHAYES L, COMMUNICATION
[5]   GENERALIZATION OF THE FORTUIN-KASTELEYN-SWENDSEN-WANG REPRESENTATION AND MONTE-CARLO ALGORITHM [J].
EDWARDS, RG ;
SOKAL, AD .
PHYSICAL REVIEW D, 1988, 38 (06) :2009-2012
[6]   RANDOM-CLUSTER MODEL .1. INTRODUCTION AND RELATION TO OTHER MODELS [J].
FORTUIN, CM ;
KASTELEYN, PW .
PHYSICA, 1972, 57 (04) :536-+
[7]   INFRARED BOUNDS, PHASE-TRANSITIONS AND CONTINUOUS SYMMETRY BREAKING [J].
FROHLICH, J ;
SIMON, B ;
SPENCER, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 50 (01) :79-95
[8]   PHASE-TRANSITIONS IN ANISOTROPIC LATTICE SPIN SYSTEMS [J].
FROHLICH, J ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 60 (03) :233-267
[9]  
FROHLICH J, 1978, COMMUN MATH PHYS, V112, P1
[10]  
KOTELES ES, 1982, EXCITONS MODERN PROB, V2, P83