An improved stability bound for binary exponential backoff

被引:21
作者
Al-Ammal, H
Goldberg, LA
MacKenzie, P
机构
[1] Univ Bahrain, Dept Comp Sci, Isa Town, Bahrain
[2] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England
[3] Bell Labs, Lucent Technol, Informat Sci Ctr, Murray Hill, NJ 07974 USA
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1007/s00224-001-0005-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Goodman, Greenberg, Madras and March gave a lower bound of n(-Omega (log n)) for the maximum arrival rate for which the n-user binary exponential backoff protocol is stable. Thus, they showed that the protocol is stable as long as the arrival rate is at most n(-Omega (log n)). We improve the lower bound, showing that the protocol is stable for arrival rates up to O(n(-(0.75+delta))), for any delta > 0.
引用
收藏
页码:229 / 244
页数:16
相关论文
共 13 条
[1]   ULTIMATE INSTABILITY OF EXPONENTIAL BACK-OFF PROTOCOL FOR ACKNOWLEDGMENT-BASED TRANSMISSION CONTROL OF RANDOM-ACCESS COMMUNICATION CHANNELS [J].
ALDOUS, DJ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1987, 33 (02) :219-223
[2]  
Fayolle G., 1995, Topics in the Constructive Theory ofCountable Markov Chains
[3]   Analysis of practical backoff protocols for contention resolution with multiple servers [J].
Goldberg, LA ;
MacKenzie, PD .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1999, 58 (01) :232-258
[4]  
GOLDBERG LA, 1997, P S FDN COMP SCI IEE
[5]  
GOLDBERG LA, IN PRESS J ACM
[6]   STABILITY OF BINARY EXPONENTIAL BACKOFF [J].
GOODMAN, J ;
GREENBERG, AG ;
MADRAS, N ;
MARCH, P .
JOURNAL OF THE ACM, 1988, 35 (03) :579-602
[7]  
GRIMMET GR, 1992, PROBABILITY RANDOM P
[8]   Analysis of backoff protocols for multiple access channels [J].
Hastad, J ;
Leighton, T ;
Rogoff, B .
SIAM JOURNAL ON COMPUTING, 1996, 25 (04) :740-774
[9]  
KELLY FP, 1985, J ROY STAT SOC B MET, V47, P379
[10]   THE NUMBER OF PACKETS TRANSMITTED BY COLLISION DETECT RANDOM-ACCESS SCHEMES [J].
KELLY, FP ;
MACPHEE, IM .
ANNALS OF PROBABILITY, 1987, 15 (04) :1557-1568