SU(2,R)q symmetries of Non-Abelian Toda theories

被引:10
|
作者
Gomes, JF
Sotkov, GM
Zimerman, AH
机构
[1] UNESP, Inst Fis Teor, BR-01405900 Sao Paulo, Brazil
[2] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
[3] ICTP, Trieste, Italy
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1016/S0370-2693(98)00764-3
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The classical and quantum algebras of a class of conformal NA-Toda models are studied. It is shown that the SL(2,R)(q) Poisson brackets algebra generated by certain chiral and antichiral charges of the nonlocal currents and the global U(1) charge appears as an algebra of the symmetries of these models. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:49 / 60
页数:12
相关论文
共 50 条
  • [31] Charge algebra for non-abelian large gauge symmetries at O(r)
    Miguel Campiglia
    Javier Peraza
    Journal of High Energy Physics, 2021
  • [32] Charge algebra for non-abelian large gauge symmetries at O(r)
    Campiglia, Miguel
    Peraza, Javier
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (12)
  • [33] SOLITONS, TAU-FUNCTIONS AND HAMILTONIAN REDUCTION FOR NON-ABELIAN CONFORMAL AFFINE TODA THEORIES
    FERREIRA, LA
    MIRAMONTES, JL
    GUILLEN, JS
    NUCLEAR PHYSICS B, 1995, 449 (03) : 631 - 679
  • [34] Emergence of non-Abelian SU(2) invariance in Abelian frustrated fermionic ladders
    Beradze, Bachana
    Tsitsishvili, Mikheil
    Tirrito, Emanuele
    Dalmonte, Marcello
    Chanda, Titas
    Nersesyan, Alexander
    PHYSICAL REVIEW B, 2023, 108 (07)
  • [35] Non-abelian vortices in N=2 gauge theories
    Ferretti, L.
    2007 EUROPHYSICS CONFERENCE ON HIGH ENERGY PHYSICS, PTS 1-12, 2008, 110
  • [36] On non-Abelian Toda A2(1) model and related hierarchies
    Demskoi, Dmitry K.
    Lee, Jyh-Hao
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (12)
  • [37] CONSISTENT CHIRAL BOSONIZATION WITH ABELIAN AND NON-ABELIAN GAUGE SYMMETRIES
    BELLUCCI, S
    GOLTERMAN, MFL
    PETCHER, DN
    NUCLEAR PHYSICS B, 1989, 326 (02) : 307 - 332
  • [38] Generalized non-abelian Toda models of dyonic type
    Gomes, JF
    Sotkov, GM
    Zimerman, AH
    GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 315 - 318
  • [39] THE HAMILTONIAN-STRUCTURE OF THE NON-ABELIAN TODA HIERARCHY
    BRUSCHI, M
    RAGNISCO, O
    JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (06) : 1414 - 1421
  • [40] Some singular motions of non-Abelian Toda lattices
    Couch, W
    Surovy, M
    Torrence, RJ
    CANADIAN JOURNAL OF PHYSICS, 2000, 78 (02) : 99 - 112