Conversion of winter flooded rice paddy planting to rice-wheat rotation decreased methane emissions during the rice-growing seasons

被引:20
|
作者
Xu, Peng [1 ,2 ]
Zhou, Wei [1 ,2 ]
Jiang, Mengdie [1 ,2 ]
Shaaban, Muhammad [3 ]
Zhou, Minghua [4 ]
Zhu, Bo [4 ]
Ren, Xiaojing [1 ]
Jiang, Yanbin [1 ,2 ]
Hu, Ronggui [1 ,2 ]
机构
[1] Huazhong Agr Univ, Minist Agr, Coll Resources & Environm, Key Lab Arable Land Conservat Middle & Lower Reac, Wuhan 430070, Peoples R China
[2] Huazhong Agr Univ, Ecol Environm Ctr, Wuhan 430070, Peoples R China
[3] Bahauddin Zakariya Univ, Fac Agr Sci & Technol, Dept Soil Sci, Multan, Pakistan
[4] Chinese Acad Sci, Inst Mt Hazards & Environm, Chengdu 610041, Peoples R China
来源
SOIL & TILLAGE RESEARCH | 2020年 / 198卷
关键词
Winter-flooded rice paddy; Rice-wheat rotation; CH4; emission; Soil temperature; Floodwater depth; Soil carbon and nitrogen; NITROUS-OXIDE EMISSIONS; GREENHOUSE-GAS EMISSIONS; CROPPING SYSTEM; ORGANIC-CARBON; WATER REGIME; N2O FLUXES; SOIL; TEMPERATURE; CH4; FIELDS;
D O I
10.1016/j.still.2019.104490
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
To our knowledge, the conversion of winter flooded rice paddy (RF) to rice-wheat rotation (RW) has markedly decreased methane (CH4) emissions during the wheat-growing seasons. However, the effects of this conversion on CH4 emissions during the rice-growing seasons are unclear. To determine CH4 emissions during the rice-growing season and associated environmental factors under RF and RW systems, a split-plot design experiment was conducted in three RF fields in hilly areas of Sichuan province, China. One-half of each field was converted to RW, and the other half remained RF. Each plot of RW and RF was further divided into four subplots: three subplots for conventional nitrogen fertilization treatment (RW-CN and RF-CN) and one for unfertilized treatment (RW-NN and RF-NN). The study showed that the cumulative CH4 emissions from RW-CN during the rice-growing seasons were 192.77 +/- 11.36 and 302.07 +/- 28.34 kg C ha(-1) in 2013 and 2014, respectively, which were decreased by 26.8% and 24.3% as compared to that from RF-CN. While for RW-NN, the cumulative CH4 emissions decreased by 54.1% and 24.0% as compared to that from RF-NN (372.49 +/- 67.05 and 300.53 +/- 13.49 kg C ha(-1) in 2013 and 2014, respectively, P < 0.05). A higher Q(10) (soil temperature sensitivity coefficient) of CH4 emissions during the whole experiment period was observed for RW-CN (6.69) than that for RF-CN (4.48). With rising soil temperature during the rice-growing seasons, the CH4 emissions for RW-CN escalated more rapidly than that for RF-CN. As expected, a positive correlation between CH4 fluxes and soil dissolved organic carbon (DOC) for both RF-CN and RW-CN was observed and DOC in RF-CN during the rice-growing seasons were higher than RW-CN. The soil dissolved inorganic nitrogen (DIN) was negatively correlated to CH4 emissions as the soil temperature ranged 22 degrees C-28 degrees C. Moreover, rice yields in the RF-CN and RW-CN treatments were similar in both years of 2013 and 2014. These findings suggested that CH4 emissions were primarily controlled by soil environment, which was affected by water and fertilizer managements. The implication of this study is that the decreased CH4 emissions and increased crop yields could be achieved by conversion management from RF to RW.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Effects of Drainage on Greenhouse Gas Emissions and Yields of Lowland Rice-Wheat Rotation System in East China
    He, Hao
    Li, Dandan
    Pan, Feifan
    Wu, Ze
    Wang, Fengwen
    Wu, Dong
    Wu, Sheng
    Yang, Shuyun
    Ma, Youhua
    AGRONOMY-BASEL, 2022, 12 (08):
  • [22] Extractable pool of biochar controls on crop productivity rather than greenhouse gas emission from a rice paddy under rice-wheat rotation
    Korai, Punhoon Khan
    Xia, Xin
    Liu, Xiaoyu
    Bian, Rongjun
    Omondi, Morris Oduor
    Nahayo, Alphonse
    Pan, Genxing
    SCIENTIFIC REPORTS, 2018, 8
  • [23] Ferrous Iron Addition Decreases Methane Emissions Induced by Rice Straw in Flooded Paddy Soils
    Hu, Jinli
    Wu, Hongtao
    Sun, Zheng
    Peng, Qi-an
    Zhao, Jinsong
    Hu, Ronggui
    ACS EARTH AND SPACE CHEMISTRY, 2020, 4 (06): : 843 - 853
  • [24] Effects of different straw returning modes on greenhouse gas emissions and crop yields in a rice-wheat rotation system
    Hu, Naijuan
    Wang, Baojun
    Gu, Zehai
    Tao, Baorui
    Zhang, Zhengwen
    Hu, Shuijin
    Zhu, Liqun
    Meng, Yali
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2016, 223 : 115 - 122
  • [25] Nitrogen fate and environmental consequence in paddy soil under rice-wheat rotation in the Taihu lake region, China
    Zhao, Xu
    Xie, Ying-xin
    Xiong, Zheng-qin
    Yan, Xiao-yuan
    Xing, Guang-xi
    Zhu, Zhao-liang
    PLANT AND SOIL, 2009, 319 (1-2) : 225 - 234
  • [26] Effects of organic matter incorporation on nitrous oxide emissions from rice-wheat rotation ecosystems in China
    Yao, Zhisheng
    Zhou, Zaixing
    Zheng, Xunhua
    Xie, Baohua
    Mei, Baoling
    Wang, Rui
    Butterbach-Bahl, Klaus
    Zhu, Jianguo
    PLANT AND SOIL, 2010, 327 (1-2) : 315 - 330
  • [27] Responses of Wheat Production, Quality, and Soil Profile Properties to Biochar Applied at Different Seasons in a Rice-Wheat Rotation
    Chen, Lipei
    Deng, Rilie
    Li, Xuewen
    Yu, Min
    Xiao, Hongdong
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2023, 92 (12) : 3359 - 3370
  • [28] Regulating CH4, N2O, and NO emissions from an alkaline paddy field under rice-wheat rotation with controlled release N fertilizer
    Lan, Ting
    Zhang, Heng
    Han, Yong
    Deng, Ouping
    Tang, Xiaoyan
    Luo, Ling
    Zeng, Jian
    Chen, Guangdeng
    Wang, Changquan
    Gao, Xuesong
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (14) : 18246 - 18259
  • [29] Different effects of biochar and a nitrification inhibitor application on paddy soil denitrification: A field experiment over two consecutive rice-growing seasons
    Wang, Shuwei
    Shan, Jun
    Xia, Yongqiu
    Tang, Quan
    Xia, Longlong
    Lin, Jinghui
    Yan, Xiaoyuan
    SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 593 : 347 - 356
  • [30] Tillage and crop residue management significantly affects N-trace gas emissions during the non-rice season of a subtropical rice-wheat rotation
    Yao, Zhisheng
    Zheng, Xunhua
    Xie, Baohua
    Mei, Baoling
    Wang, Rui
    Butterbach-Bahl, Klaus
    Zhu, Jianguo
    Yin, Rui
    SOIL BIOLOGY & BIOCHEMISTRY, 2009, 41 (10): : 2131 - 2140