Actions of the quantum toroidal algebra of type sl2 on the space of vertex operators for Uq(gl2) modules

被引:2
作者
Miki, Kei [1 ]
机构
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Pure & Appl Math, Suita, Osaka 5650871, Japan
关键词
AFFINE ALGEBRAS; REPRESENTATIONS;
D O I
10.1063/1.4955415
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Highest weight modules for U-q(gl(2)) are endowed with a structure of modules for the quantum toriodal algebra U-kappa of type sl(2). Using this, we define U-kappa actions on the space of vertex operators for irreducible highest weight U-q(gl(2)) modules. Highest or lowest weight vectors of the thus obtained U-kappa modules are expressed in terms of an intertwiner for U-q(sl(2)) modules and an extra boson. The submodules generated by these vectors are investigated. Published by AIP Publishing.
引用
收藏
页数:17
相关论文
共 22 条
[1]   BRAID GROUP ACTION AND QUANTUM AFFINE ALGEBRAS [J].
BECK, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (03) :555-568
[2]   QUANTUM AFFINE ALGEBRAS [J].
CHARI, V ;
PRESSLEY, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 142 (02) :261-283
[3]   CRYSTAL BASE AND Q-VERTEX OPERATORS [J].
DATE, E ;
JIMBO, M ;
OKADO, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 155 (01) :47-69
[4]   Weyl group extension of quantized current algebras [J].
Ding, J ;
Khoroshkin, S .
TRANSFORMATION GROUPS, 2000, 5 (01) :35-59
[5]   ISOMORPHISM OF 2 REALIZATIONS OF QUANTUM AFFINE ALGEBRA UQ(GL(N))OVER-CAP [J].
DING, J ;
FRENKEL, IB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 156 (02) :277-300
[6]   Drinfeld comultiplication and vertex operators [J].
Ding, J ;
Iohara, K .
JOURNAL OF GEOMETRY AND PHYSICS, 1997, 23 (01) :1-13
[7]   Quantum current operators .1. Zeros and poles of quantum current operators and the condition of quantum integrability [J].
Ding, JT ;
Miwa, T .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1997, 33 (02) :277-284
[8]  
Drinfeld V., 1988, Sov. Math. Dokl., V36, P212
[9]  
Drinfeld V.G., 1985, Soviet Mathematics, V32, P254
[10]   QUANTUM AFFINE ALGEBRAS AND HOLONOMIC DIFFERENCE-EQUATIONS [J].
FRENKEL, IB ;
RESHETIKHIN, NY .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 146 (01) :1-60