Combined Antenna and Localized Plasmon Resonance in Raman Scattering from Random Arrays of Silver-Coated, Vertically Aligned Multiwalled Carbon Nanotubes

被引:82
作者
Dawson, P. [1 ]
Duenas, J. A. [1 ]
Boyle, M. G. [1 ]
Doherty, M. D. [1 ]
Bell, S. E. J. [1 ]
Kern, A. M. [2 ]
Martin, O. J. F. [2 ]
Teh, A. -S. [3 ]
Teo, K. B. K. [3 ]
Milne, W. I. [3 ]
机构
[1] Queens Univ Belfast, Sch Maths & Phys, Ctr Nanostruct Media, Belfast BT7 INN, Antrim, North Ireland
[2] Ecole Polytech Fed Lausanne, Nanophoton & Metrol Lab, CH-1015 Lausanne, Switzerland
[3] Univ Cambridge, Ctr Appl Photon & Elect, Cambridge CB3 0FA, England
基金
瑞士国家科学基金会;
关键词
Surface-enhanced Raman scattering; optical antenna; plasmons; surface integral equation; carbon nanotubes; NANOROD ARRAYS; ASPECT RATIO; SURFACE; SPECTROSCOPY; SERS; DEPENDENCE; NANOSTRUCTURES; HYBRIDIZATION; ENHANCEMENT; ELECTRODE;
D O I
10.1021/nl102838w
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electric field enhancement associated with detailed structure within novel optical antenna nanostructures is modeled using the surface integral equation technique in the context of surface-enhanced Raman scattering (SERS). The antennae comprise random arrays of vertically aligned, multi-walled carbon nanotubes dressed with highly granular Ag. Different types of "hot-spot" underpinning the SERS are identified, but contrasting characteristics are revealed. Those at the outer edges of the Ag grains are antenna driven with field enhancement amplified in antenna antinodes while intergrain hotspots are largely independent of antenna activity Hot-spots between the tops of antennae leaning towards each other also appear to benefit from antenna amplification.
引用
收藏
页码:365 / 371
页数:7
相关论文
共 40 条
[31]   Amino-functionalized carbon nanotubes for binding to polymers and biological systems [J].
Ramanathan, T ;
Fisher, FT ;
Ruoff, RS ;
Brinson, LC .
CHEMISTRY OF MATERIALS, 2005, 17 (06) :1290-1295
[32]   REFRACTIVE-INDEXES OF PYROLYTIC-GRAPHITE, AMORPHOUS-CARBON, AND FLAME SOOT IN THE TEMPERATURE-RANGE 25-DEGREES-C TO 600-DEGREES-C [J].
STAGG, BJ ;
CHARALAMPOPOULOS, TT .
COMBUSTION AND FLAME, 1993, 94 (04) :381-396
[33]   Uniform patterned growth of carbon nanotubes without surface carbon [J].
Teo, KBK ;
Chhowalla, M ;
Amaratunga, GAJ ;
Milne, WI ;
Hasko, DG ;
Pirio, G ;
Legagneux, P ;
Wyczisk, F ;
Pribat, D .
APPLIED PHYSICS LETTERS, 2001, 79 (10) :1534-1536
[34]   Strong anomalous optical dispersion of graphene: complex refractive index measured by Picometrology [J].
Wang, Xuefeng ;
Chen, Yong P. ;
Nolte, David D. .
OPTICS EXPRESS, 2008, 16 (26) :22105-22112
[35]   Surface integral equation method for general composite metallic and dielectric structures with junctions [J].
Yla-Oijala, P. ;
Taskinen, M. ;
Sarvas, J. .
PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2005, 52 :81-108
[36]  
Zhang WH, 2007, J PHYS CHEM C, V111, P1733, DOI 10.1021/jp064740r
[37]   Mode-Selective Surface-Enhanced Raman Spectroscopy Using Nanofabricated Plasmonic Dipole Antennas [J].
Zhang, Weihua ;
Fischer, Holger ;
Schmid, Thomas ;
Zenobi, Renato ;
Martin, Olivier J. F. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (33) :14672-14675
[38]   Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy [J].
Zhang, XY ;
Young, MA ;
Lyandres, O ;
Van Duyne, RP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (12) :4484-4489
[39]   Electronic properties of carbon nanotubes with covalent sidewall functionalization [J].
Zhao, JJ ;
Park, HK ;
Han, J ;
Lu, JP .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (14) :4227-4230
[40]   Silicon substrate microelectrode array for surface-enhanced Raman spectroscopy [J].
Zhelyaskov, VR ;
Milne, ET ;
Hetke, JF ;
Morris, MD .
APPLIED SPECTROSCOPY, 1995, 49 (12) :1793-1795