Parallelization Methods of the Template Matching Method on Graphics Accelerators

被引:0
作者
Kertesz, Gabor [1 ]
Szenasi, Sandor [1 ]
Vamossy, Zoltan [1 ]
机构
[1] Obuda Univ, John von Neumann Fac Informat, Budapest, Hungary
来源
2015 16TH IEEE INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND INFORMATICS (CINTI) | 2015年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Template matching is a classic technique used in image processing for object detection. It is based on multiple matrix-based calculations, where there are no dependencies on partial results, so parallel solutions could be created. In this article two GPU implemented methods are presented and compared to the CPU-based sequential solution.
引用
收藏
页码:161 / 164
页数:4
相关论文
共 13 条
  • [1] Abdel-Hakim A. E., 2005, INF FUS 2005 8 INT C, V2
  • [2] Almási D, 2014, ACTA POLYTECH HUNG, V11, P169
  • [3] [Anonymous], 2007, Optimizing parallel reductions in CUDA
  • [4] [Anonymous], 2016, Programming massively parallel processors: a hands-on approach
  • [5] [Anonymous], 2014, CUDA C PROGRAMMING G
  • [6] Brunelli R., 2009, Template Matching Techniques in Computer Vision: Theory and Practice
  • [7] GROUP AVERAGED LINEAR TRANSFORMS THAT DETECT CORNERS AND EDGES
    DUNN, JC
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 1975, 24 (12) : 1191 - 1201
  • [8] Györök G, 2014, ACTA POLYTECH HUNG, V11, P235
  • [9] Hashimoto T, 2013, ACTA POLYTECH HUNG, V10, P139
  • [10] I. Corporation and Itseez, 2015, OP 3 0 ONL DOC