Mammalian antiviral systems directed by small RNA

被引:24
作者
Takahashi, Tomoko [1 ]
Heaton, Steven M. [2 ,3 ]
Parrish, Nicholas F. [2 ,3 ]
机构
[1] Saitama Univ, Grad Sch Sci & Engn, Dept Biochem & Mol Biol, Saitama, Japan
[2] RIKEN, Cluster Pioneering Res, Genome Immunobiol RIKEN Hakubi Res Team, Yokohama, Japan
[3] RIKEN, Ctr Integrat Med Sci, Yokohama, Kanagawa, Japan
关键词
DOUBLE-STRANDED-RNA; TOLL-LIKE RECEPTORS; VIRUS VP35 PROTEIN; VIRAL SUPPRESSOR; CELLULAR MICRORNAS; INTERFERING-RNA; GENE-EXPRESSION; NUCLEAR EXPORT; RIG-I; CELLS;
D O I
10.1371/journal.ppat.1010091
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Author summaryViruses are all around us and are likely inside some of the reader's cells at this moment. Organisms are accommodated to this reality and encode various immune systems to limit virus replication. In mammals, the best studied immune systems are directed by proteins that specifically recognize viruses. These include diverse antibodies and T cell receptors, which recognize viral proteins, and pattern recognition receptors, some of which can recognize viral nucleic acids. In other organisms, including bacteria, immune systems directed by small RNAs are also well known; spacer-derived guide RNAs in CRISPR/Cas immune systems are one prominent example. The small RNAs directing these systems derive their specificity via complementary base pairing with their targets, which include both host and viral nucleic acids. Rather than having "traded in" these systems for more advanced protein-directed systems, increasing evidence supports the perspective that small RNA-directed immune systems remain active in mammalian antiviral immunity in some contexts. Here, we review what is known so far about the emerging roles of mammalian siRNAs, miRNAs, piRNAs, and tRNAs in directing immunity to viruses. There are strong incentives for human populations to develop antiviral systems. Similarly, genomes that encode antiviral systems have had strong selective advantages. Protein-guided immune systems, which have been well studied in mammals, are necessary for survival in our virus-laden environments. Small RNA-directed antiviral immune systems suppress invasion of cells by non-self genetic material via complementary base pairing with target sequences. These RNA silencing-dependent systems operate in diverse organisms. In mammals, there is strong evidence that microRNAs (miRNAs) regulate endogenous genes important for antiviral immunity, and emerging evidence that virus-derived nucleic acids can be directly targeted by small interfering RNAs (siRNAs), PIWI-interacting RNAs (piRNAs), and transfer RNAs (tRNAs) for protection in some contexts. In this review, we summarize current knowledge of the antiviral functions of each of these small RNA types and consider their conceptual and mechanistic overlap with innate and adaptive protein-guided immunity, including mammalian antiviral cytokines, as well as the prokaryotic RNA-guided immune system, CRISPR. In light of recent successes in delivery of RNA for antiviral purposes, most notably for vaccination, we discuss the potential for development of small noncoding RNA-directed antiviral therapeutics and prophylactics.
引用
收藏
页数:18
相关论文
共 134 条
[41]   Activation of neuronal genes via LINE-1 elements upon global DNA demethylation in human neural progenitors [J].
Jonsson, Marie E. ;
Brattas, Per Ludvik ;
Gustafsson, Charlotte ;
Petri, Rebecca ;
Yudovich, David ;
Pircs, Karolina ;
Verschuere, Shana ;
Madsen, Sofia ;
Hansson, Jenny ;
Larsson, Jonas ;
Mansson, Robert ;
Meissner, Alexander ;
Jakobsson, Johan .
NATURE COMMUNICATIONS, 2019, 10 (1)
[42]   Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA [J].
Jopling, CL ;
Yi, MK ;
Lancaster, AM ;
Lemon, SM ;
Sarnow, P .
SCIENCE, 2005, 309 (5740) :1577-1581
[43]   Dengue NS3, an RNAi suppressor, modulates the human miRNA pathways through its interacting partner [J].
Kakumani, Pavan Kumar ;
Rajgokul, K. S. ;
Ponia, Sanket Singh ;
Kaur, Inderjeet ;
Mahanty, Srikrishna ;
Medigeshi, Guruprasad R. ;
Banerjea, Akhil C. ;
Chopra, Arun Prasad ;
Malhotra, Pawan ;
Mukherjee, Sunil K. ;
Bhatnagar, Raj K. .
BIOCHEMICAL JOURNAL, 2015, 471 :89-99
[44]   Role of RNA Interference (RNAi) in Dengue Virus Replication and Identification of NS4B as an RNAi Suppressor [J].
Kakumani, Pavan Kumar ;
Ponia, Sanket Singh ;
Rajgokul, K. S. ;
Sood, Vikas ;
Chinnappan, Mahendran ;
Banerjea, Akhil C. ;
Medigeshi, Guruprasad R. ;
Malhotra, Pawan ;
Mukherjee, Sunil K. ;
Bhatnagar, Raj K. .
JOURNAL OF VIROLOGY, 2013, 87 (16) :8870-8883
[45]   The 7a Accessory Protein of Severe Acute Respiratory Syndrome Coronavirus Acts as an RNA Silencing Suppressor [J].
Karjee, Sumona ;
Minhas, Ankita ;
Sood, Vikas ;
Ponia, Sanket S. ;
Banerjea, Akhil C. ;
Chow, Vincent T. K. ;
Mukherjee, Sunil K. ;
Lal, Sunil K. .
JOURNAL OF VIROLOGY, 2010, 84 (19) :10395-10401
[46]   A somatic role for the histone methyltransferase Setdb1 in endogenous retrovirus silencing [J].
Kato, Masaki ;
Takemoto, Keiko ;
Shinkai, Yoichi .
NATURE COMMUNICATIONS, 2018, 9
[47]   Immunology's Coming of Age [J].
Kaufmann, Stefan H. E. .
FRONTIERS IN IMMUNOLOGY, 2019, 10
[48]   The human Piwi protein Hiwi2 associates with tRNA-derived piRNAs in somatic cells [J].
Keam, Simon P. ;
Young, Paul E. ;
McCorkindale, Alexandra L. ;
Dang, Thurston H. Y. ;
Clancy, Jennifer L. ;
Humphreys, David T. ;
Preiss, Thomas ;
Hutvagner, Gyorgy ;
Martin, David I. K. ;
Cropley, Jennifer E. ;
Suter, Catherine M. .
NUCLEIC ACIDS RESEARCH, 2014, 42 (14) :8984-8995
[49]   The meanings of 'function' in biology and the problematic case of de novo gene emergence [J].
Keeling, Diane Marie ;
Garza, Patricia ;
Nartey, Charisse Michelle ;
Carvunis, Anne-Ruxandra .
ELIFE, 2019, 8
[50]   Patient-Customized Oligonucleotide Therapy for a Rare Genetic Disease [J].
Kim, J. ;
Hu, C. ;
El Achkar, C. Moufawad ;
Black, L. E. ;
Douville, J. ;
Larson, A. ;
Pendergast, M. K. ;
Goldkind, S. F. ;
Lee, E. A. ;
Kuniholm, A. ;
Soucy, A. ;
Vaze, J. ;
Belur, N. R. ;
Fredriksen, K. ;
Stojkovska, I. ;
Tsytsykova, A. ;
Armant, M. ;
DiDonato, R. L. ;
Choi, J. ;
Cornelissen, L. ;
Pereira, L. M. ;
Augustine, E. F. ;
Genetti, C. A. ;
Dies, K. ;
Barton, B. ;
Williams, L. ;
Goodlett, B. D. ;
Riley, B. L. ;
Pasternak, A. ;
Berry, E. R. ;
Pflock, K. A. ;
Chu, S. ;
Reed, C. ;
Tyndall, K. ;
Agrawal, P. B. ;
Beggs, A. H. ;
Grant, P. E. ;
Urion, D. K. ;
Snyder, R. O. ;
Waisbren, S. E. ;
Poduri, A. ;
Park, P. J. ;
Patterson, A. ;
Biffi, A. ;
Mazzulli, J. R. ;
Bodamer, O. ;
Berde, C. B. ;
Yu, T. W. .
NEW ENGLAND JOURNAL OF MEDICINE, 2019, 381 (17) :1644-1652