Photosynthetic pigment-protein complexes as highly connected networks: implications for robust energy transport

被引:14
作者
Baker, Lewis A.
Habershon, Scott [1 ]
机构
[1] Univ Warwick, Dept Chem, Coventry CV4 7AL, W Midlands, England
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2017年 / 473卷 / 2201期
基金
英国工程与自然科学研究理事会;
关键词
quantum dynamics; photosynthesis; networks; electronic energy transport; pigment-protein complexes; LIGHT-HARVESTING COMPLEX; BACTERIOCHLOROPHYLL-A-PROTEIN; QUANTUM COHERENCE; CRYSTAL-STRUCTURE; PHOTOSYSTEM-II; 8TH BACTERIOCHLOROPHYLL; CHLOROBIUM-TEPIDUM; TRANSFER DYNAMICS; STRUCTURAL BASIS; FMO PROTEIN;
D O I
10.1098/rspa.2017.0112
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Photosynthetic pigment-protein complexes (PPCs) are a vital component of the light-harvesting machinery of all plants and photosynthesizing bacteria, enabling efficient transport of the energy of absorbed light towards the reaction centre, where chemical energy storage is initiated. PPCs comprise a set of chromophore molecules, typically bacteriochlorophyll species, held in a well-defined arrangement by a protein scaffold; this relatively rigid distribution leads to a viewpoint in which the chromophore subsystem is treated as a network, where chromophores represent vertices and inter-chromophore electronic couplings represent edges. This graph-based view can then be used as a framework within which to interrogate the role of structural and electronic organization in PPCs. Here, we use this network-based viewpoint to compare excitation energy transfer (EET) dynamics in the light-harvesting complex II (LHC-II) system commonly found in higher plants and the Fenna-Matthews-Olson (FMO) complex found in green sulfur bacteria. The results of our simple network-based investigations clearly demonstrate the role of network connectivity and multiple EET pathways on the efficient and robust EET dynamics in these PPCs, and highlight a role for such considerations in the development of new artificial light-harvesting systems.
引用
收藏
页数:25
相关论文
共 91 条
[1]   Quantum oscillatory exciton migration in photosynthetic reaction centers [J].
Abramavicius, Darius ;
Mukamel, Shaul .
JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (06)
[2]   Calculation of pigment transition energies in the FMO protein [J].
Adolphs, Julia ;
Mueh, Frank ;
Madjet, Mohamed El-Amine ;
Renger, Thomas .
PHOTOSYNTHESIS RESEARCH, 2008, 95 (2-3) :197-209
[3]   How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria [J].
Adolphs, Julia ;
Renger, Thomas .
BIOPHYSICAL JOURNAL, 2006, 91 (08) :2778-2797
[4]   Error and attack tolerance of complex networks [J].
Albert, R ;
Jeong, H ;
Barabási, AL .
NATURE, 2000, 406 (6794) :378-382
[5]  
Alberts B., 2002, Molecular Biology of the Cell. (4th edition), V4th ed
[6]   Robustness, efficiency, and optimality in the Fenna-Matthews-Olson photosynthetic pigment-protein complex [J].
Baker, Lewis A. ;
Habershon, Scott .
JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (10)
[7]   Evolution of photosystem I - from symmetry through pseudosymmetry to asymmetry [J].
Ben-Shem, A ;
Frolow, F ;
Nelson, N .
FEBS LETTERS, 2004, 564 (03) :274-280
[8]   Reduced density matrix hybrid approach: Application to electronic energy transfer [J].
Berkelbach, Timothy C. ;
Markland, Thomas E. ;
Reichman, David R. .
JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (08)
[9]   Reduced density matrix hybrid approach: An efficient and accurate method for adiabatic and non-adiabatic quantum dynamics [J].
Berkelbach, Timothy C. ;
Reichman, David R. ;
Markland, Thomas E. .
JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (03)
[10]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242