Optimum Spatio-Spectral Filtering Network for Brain-Computer Interface

被引:58
作者
Zhang, Haihong [1 ]
Chin, Zheng Yang [1 ]
Ang, Kai Keng [1 ]
Guan, Cuntai [1 ]
Wang, Chuanchu [1 ]
机构
[1] Agcy Sci Technol & Res, Inst Infocomm Res, Singapore 138632, Singapore
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2011年 / 22卷 / 01期
关键词
Brain-computer interface; motor imagery electroencephalography; spatio-spectral filtering; SINGLE-TRIAL EEG; BOOSTING BIT RATES; MOTOR IMAGERY; MUTUAL INFORMATION; CLASSIFICATION; COMMUNICATION; COHERENCY; PATTERNS;
D O I
10.1109/TNN.2010.2084099
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a feature extraction method for motor imagery brain-computer interface (BCI) using electroencephalogram. We consider the primary neurophysiologic phenomenon of motor imagery, termed event-related desynchronization, and formulate the learning task for feature extraction as maximizing the mutual information between the spatio-spectral filtering parameters and the class labels. After introducing a nonparametric estimate of mutual information, a gradient-based learning algorithm is devised to efficiently optimize the spatial filters in conjunction with a band-pass filter. The proposed method is compared with two existing methods on real data: a BCI Competition IV dataset as well as our data collected from seven human subjects. The results indicate the superior performance of the method for motor imagery classification, as it produced higher classification accuracy with statistical significance (>= 95% confidence level) in most cases.
引用
收藏
页码:52 / 63
页数:12
相关论文
共 41 条
[1]  
Ang KK, 2008, IEEE IJCNN, P2390, DOI 10.1109/IJCNN.2008.4634130
[2]   A clinical evaluation of non-invasive motor imagery-based brain-computer interface in stroke [J].
Ang, Kai Keng ;
Guan, Cuntai ;
Chua, Karen Sui Geok ;
Ang, Beng Ti ;
Kuah, Christopher Wee Keong ;
Wang, Chuanchu ;
Phua, Kok Soon ;
Chin, Zheng Yang ;
Zhang, Haihong .
2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8, 2008, :4178-+
[3]  
[Anonymous], 1991, ELEMENTS INFORM THEO, DOI [DOI 10.1002/0471200611, 10.1002/0471200611]
[4]   A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals [J].
Bashashati, Ali ;
Fatourechi, Mehrdad ;
Ward, Rabab K. ;
Birch, Gary E. .
JOURNAL OF NEURAL ENGINEERING, 2007, 4 (02) :R32-R57
[5]  
BCI Competition IV, BCI COMP 4
[6]  
Ben-Bassat M., 1982, Handbook of statistics, V2, P773, DOI DOI 10.1016/S0169-7161(82)02038-0
[7]   Boosting bit rates and error detection for the classification of fast-paced motor commands based on single-trial EEG analysis [J].
Blankertz, B ;
Dornhege, G ;
Schäfer, C ;
Krepki, R ;
Kohlmorgen, J ;
Müller, KR ;
Kunzmann, V ;
Losch, F ;
Curio, G .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2003, 11 (02) :127-131
[8]   Optimizing spatial filters for robust EEG single-trial analysis [J].
Blankertz, Benjamin ;
Tomioka, Ryota ;
Lemm, Steven ;
Kawanabe, Motoaki ;
Mueller, Klaus-Robert .
IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (01) :41-56
[9]   The non-invasive Berlin Brain-Computer Interface:: Fast acquisition of effective performance in untrained subjects [J].
Blankertz, Benjamin ;
Dornhege, Guido ;
Krauledat, Matthias ;
Mueller, Klaus-Robert ;
Curio, Gabriel .
NEUROIMAGE, 2007, 37 (02) :539-550
[10]  
Bowman AW., 1997, Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations, Vvol. 18