Three-dimensional Einstein-Klein-Gordon system in characteristic numerical relativity -: art. no. 064028

被引:13
|
作者
Barreto, W [1 ]
Da Silva, A
Gómez, R
Lehner, L
Rosales, L
Winicour, J
机构
[1] Univ Los Andes, Fac Ciencias, Ctr Fis Fundamental, Merida 5101, Venezuela
[2] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[3] Pittsburgh Supercomp Ctr, Pittsburgh, PA 15213 USA
[4] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA
[5] Univ Expt Politecn Antonio Jose de Sucre, Puerto Ordaz, Venezuela
[6] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany
来源
PHYSICAL REVIEW D | 2005年 / 71卷 / 06期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevD.71.064028
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We incorporate a massless scalar field into a three-dimensional code for the characteristic evolution of the gravitational field. The extended three-dimensional code for the Einstein-Klein-Gordon system is calibrated to be second-order convergent. It provides an accurate calculation of the gravitational and scalar radiation at infinity. As an application, we simulate the fully nonlinear evolution of an asymmetric scalar pulse of ingoing radiation propagating toward an interior Schwarzschild black hole and compute the backscattered scalar and gravitational outgoing radiation patterns. The amplitudes of the scalar and gravitational outgoing radiation modes exhibit the predicted power law scaling with respect to the amplitude of the initial data. For the scattering of an axisymmetric scalar field, the final ring down matches the complex frequency calculated perturbatively for the l = 2 quasinormal mode.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [1] Global existence and completeness of classical solutions in higher dimensional Einstein-Klein-Gordon system
    Wijayanto, Mirda Prisma
    Akbar, Fiki Taufik
    Gunara, Bobby Eka
    GENERAL RELATIVITY AND GRAVITATION, 2024, 56 (02)
  • [2] Global existence of classical static solutions of four dimensional Einstein-Klein-Gordon system
    Wijayanto, Mirda Prisma
    Fadhilla, Emir Syahreza
    Akbar, Fiki Taufik
    Gunara, Bobby Eka
    GENERAL RELATIVITY AND GRAVITATION, 2023, 55 (01)
  • [3] Incorporation of matter into characteristic numerical relativity -: art. no. 024005
    Bishop, NT
    Gómez, R
    Lehner, L
    Maharaj, M
    Winicour, J
    PHYSICAL REVIEW D, 1999, 60 (02):
  • [4] Einstein-Klein-Gordon system via Cauchy-characteristic evolution: computation of memory and ringdown tail
    Ma, Sizheng
    Nelli, Kyle C.
    Moxon, Jordan
    Scheel, Mark A.
    Deppe, Nils
    Kidder, Lawrence E.
    Throwe, William
    Vu, Nils L.
    CLASSICAL AND QUANTUM GRAVITY, 2025, 42 (05)
  • [5] Numerical solutions of the three-dimensional magnetohydrodynamic α model -: art. no. 046304
    Mininni, PD
    Montgomery, DC
    Pouquet, A
    PHYSICAL REVIEW E, 2005, 71 (04):
  • [6] Robust evolution system for numerical relativity -: art. no. 104014
    Arbona, A
    Bona, C
    Massó, J
    Stela, J
    PHYSICAL REVIEW D, 1999, 60 (10):
  • [7] Three-dimensional parallel vortex rings in Bose-Einstein condensates -: art. no. 033605
    Crasovan, LC
    Pérez-García, VM
    Danaila, I
    Mihalache, D
    Torner, L
    PHYSICAL REVIEW A, 2004, 70 (03): : 033605 - 1
  • [8] Three-dimensional liquid display - art. no. 678339
    Chekhovskiy, Aleksandr
    Toshiyoshi, Hiroshi
    OPTICAL TRANSMISSION, SWITCHING, AND SUBSYSTEMS V, PTS 1 AND 2, 2007, 6783 : 78339 - 78339
  • [9] Axisymmetric core collapse simulations using characteristic numerical relativity -: art. no. 124018
    Siebel, F
    Font, JA
    Müller, E
    Papadopoulos, P
    PHYSICAL REVIEW D, 2003, 67 (12)
  • [10] Three-dimensional crystalline ion beams -: art. no. 036501
    Schramm, U
    Schätz, T
    Habs, D
    PHYSICAL REVIEW E, 2002, 66 (03): : 1 - 036501