Planar Double Box Integral for Top Pair Production with a Closed Top Loop to all orders in the Dimensional Regularization Parameter

被引:66
作者
Adams, Luise [1 ]
Chaubey, Ekta [1 ]
Weinzierl, Stefan [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Phys, PRISMA Cluster Excellence, D-55099 Mainz, Germany
关键词
DIFFERENTIAL-EQUATIONS; FEYNMAN-INTEGRALS; MULTIPLE POLYLOGARITHMS; SUNRISE GRAPH; NUMERICAL EVALUATION; MULTILOOP INTEGRALS; MASTER INTEGRALS; DIAGRAMS; AMPLITUDES; MASSES;
D O I
10.1103/PhysRevLett.121.142001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We compute systematically for the planar double box Feynman integral relevant to top pair production with a closed top loop the Laurent expansion in the dimensional regularization parameter epsilon. This is done by transforming the system of differential equations for this integral and all its sub-topologies to a form linear in epsilon, where the epsilon(0) part is strictly lower triangular. This system is easily solved order by order in the dimensional regularization parameter epsilon. This is an example of an elliptic multiscale integral involving several elliptic subtopologies. Our methods are applicable to similar problems.
引用
收藏
页数:6
相关论文
共 77 条
[1]   Iterated elliptic and hypergeometric integrals for Feynman diagrams [J].
Ablinger, J. ;
Bluemlein, J. ;
De Freitas, A. ;
van Hoeij, M. ;
Imamoglu, E. ;
Raab, C. G. ;
Radu, C. -S. ;
Schneider, C. .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (06)
[2]  
Adams L., ARXIV180604981
[3]   Feynman integrals and iterated integrals of modular forms [J].
Adams, Luise ;
Weinzierl, Stefan .
COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2018, 12 (02) :193-251
[4]   The ε-form of the differential equations for Feynman integrals in the elliptic case [J].
Adams, Luise ;
Weinzierl, Stefan .
PHYSICS LETTERS B, 2018, 781 :270-278
[5]   Simplifying Differential Equations for Multiscale Feynman Integrals beyond Multiple Polylogarithms [J].
Adams, Luise ;
Chaubey, Ekta ;
Weinzierl, Stefan .
PHYSICAL REVIEW LETTERS, 2017, 118 (14)
[6]   The kite integral to all orders in terms of elliptic polylogarithms [J].
Adams, Luise ;
Bogner, Christian ;
Schweitzer, Armin ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (12)
[7]   The iterated structure of the all-order result for the two-loop sunrise integral [J].
Adams, Luise ;
Bogner, Christian ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (03)
[8]   The two-loop sunrise integral around four space-time dimensions and generalisations of the Clausen and Glaisher functions towards the elliptic case [J].
Adams, Luise ;
Bogner, Christian ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (07)
[9]   The two-loop sunrise graph in two space-time dimensions with arbitrary masses in terms of elliptic dilogarithms [J].
Adams, Luise ;
Bogner, Christian ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (10)
[10]   The two-loop sunrise graph with arbitrary masses [J].
Adams, Luise ;
Bogner, Christian ;
Weinzierl, Stefan .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (05)