An Indirect Finite Element Method for Variable-Coefficient Space-Fractional Diffusion Equations and Its Optimal-Order Error Estimates

被引:5
作者
Zheng, Xiangcheng [1 ]
Ervin, V. J. [2 ]
Wang, Hong [1 ]
机构
[1] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
[2] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
基金
美国国家科学基金会;
关键词
Fractional diffusion equation; Finite element method; Convergence estimate; 65N30; 35B65; 41A10; 33C45; SPECTRAL-GALERKIN METHODS; DIFFERENTIAL-EQUATIONS; GUIDE;
D O I
10.1007/s42967-019-00037-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study an indirect finite element approximation for two-sided space-fractional diffusion equations in one space dimension. By the representation formula of the solutions u(x) to the proposed variable coefficient models in terms of v(x), the solutions to the constant coefficient analogues, we apply finite element methods for the constant coefficient fractional diffusion equations to solve for the approximations vh(x) to v(x) and then obtain the approximations uh(x) of u(x) by plugging vh(x) into the representation of u(x). Optimal-order convergence estimates of u(x)-uh(x) are proved in both L2 and H alpha /2 norms. Several numerical experiments are presented to demonstrate the sharpness of the derived error estimates.
引用
收藏
页码:147 / 162
页数:16
相关论文
共 28 条
[1]  
Adams Robert A., 2003, Sobolev Spaces, V140
[2]   The fractional-order governing equation of Levy motion [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1413-1423
[3]  
Brenner SC., 2002, The mathematical theory of finite element methods, DOI DOI 10.1007/978-1-4757-3658-8
[4]  
CIARLET P.G., 2002, The Finite Element Method for Elliptic Problems
[5]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[6]   REGULARITY OF THE SOLUTION TO 1-D FRACTIONAL ORDER DIFFUSION EQUATIONS [J].
Ervin, V. J. ;
Heuer, N. ;
Roop, J. P. .
MATHEMATICS OF COMPUTATION, 2018, 87 (313) :2273-2294
[7]   Variational formulation for the stationary fractional advection dispersion equation [J].
Ervin, VJ ;
Roop, JP .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2006, 22 (03) :558-576
[8]  
Gilbarg D., 1983, Elliptic Partial Differential Equations of Second Order, DOI 10.1007/978-3-642-61798-0
[9]   Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces [J].
Guo, BY ;
Wang, LL .
JOURNAL OF APPROXIMATION THEORY, 2004, 128 (01) :1-41
[10]  
Hao Z., OPTIMAL REGULARITY E, P1