A Complexity Dichotomy for Poset Constraint Satisfaction

被引:8
作者
Kompatscher, Michael [1 ]
Trung Van Pham [1 ]
机构
[1] Tech Univ Wien, Theory & Log Grp, Vienna, Austria
来源
34TH SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2017) | 2017年 / 66卷
基金
奥地利科学基金会; 欧洲研究理事会;
关键词
Constraint Satisfaction; Random Partial Order; Computational Complexity; Universal Algebra; Ramsey Theory; REDUCTS;
D O I
10.4230/LIPIcs.STACS.2017.47
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We determine the complexity of all constraint satisfaction problems over partial orders, in particular we show that every such problem is NP-complete or can be solved in polynomial time. This result generalises the complexity dichotomy for temporal constraint satisfaction problems by Bodirsky and Kara. We apply the so called universal-algebraic approach together with tools from model theory and Ramsey theory to prove our result. In the course of this analysis we also establish a structural dichotomy regarding the model theoretic properties of the reducts of the random partial order.
引用
收藏
页数:12
相关论文
共 29 条
[1]   ON LAMPORT INTERPROCESSOR COMMUNICATION MODEL [J].
ANGER, FD .
ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS, 1989, 11 (03) :404-417
[2]  
Barto Libor, 2016, P LICS 2016
[3]  
Bodirsky M, 2005, LECT NOTES COMPUT SC, V3404, P110
[4]   The complexity of equality constraint languages [J].
Bodirsky, Manuel ;
Kara, Jan .
THEORY OF COMPUTING SYSTEMS, 2008, 43 (02) :136-158
[5]   Constraint satisfaction with countable homogeneous templates [J].
Bodirsky, Manuel ;
Nesetril, Jaroslav .
JOURNAL OF LOGIC AND COMPUTATION, 2006, 16 (03) :359-373
[6]   Schaefer's Theorem for Graphs [J].
Bodirsky, Manuel ;
Pinsker, Michael .
JOURNAL OF THE ACM, 2015, 62 (03)
[7]   DECIDABILITY OF DEFINABILITY [J].
Bodirsky, Manuel ;
Pinsker, Michael ;
Tsankov, Todor .
JOURNAL OF SYMBOLIC LOGIC, 2013, 78 (04) :1036-1054
[8]  
Bodirsky M, 2011, CONTEMP MATH, V558, P489
[9]   The Complexity of Temporal Constraint Satisfaction Problems [J].
Bodirsky, Manuel ;
Kara, Jan .
JOURNAL OF THE ACM, 2010, 57 (02)
[10]   Maximal infinite-valued constraint languages [J].
Bodirsky, Manuel ;
Chen, Hubie ;
Kara, Jan ;
von Oertzen, Timo .
THEORETICAL COMPUTER SCIENCE, 2009, 410 (18) :1684-1693