Quantization of the Lie Bialgebra of String Topology

被引:7
作者
Chen, Xiaojun [1 ]
Eshmatov, Farkhod [1 ]
Gan, Wee Liang [2 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
关键词
HOMOLOGY;
D O I
10.1007/s00220-010-1139-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let M be a smooth, simply-connected, closed oriented manifold, and LM the free loop space of M. Using a Poincar, duality model for M, we show that the reduced equivariant homology of LM has the structure of a Lie bialgebra, and we construct a Hopf algebra which quantizes the Lie bialgebra.
引用
收藏
页码:37 / 53
页数:17
相关论文
共 24 条
  • [1] Abbaspour H., 2008, ALGEBRAIC STRING BRA
  • [2] String bracket and flat connections
    Abbaspour, Hossein
    Zeinalian, Mahmoud
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2007, 7 : 197 - 231
  • [3] Andersen JE, 1998, MATH PROC CAMBRIDGE, V124, P451
  • [4] The Poisson structure on the moduli space of flat connections and chord diagrams
    Andersen, JE
    Mattes, J
    Reshetikhin, N
    [J]. TOPOLOGY, 1996, 35 (04) : 1069 - 1083
  • [5] [Anonymous], 1998, GRUNDLEHREN MATH WIS
  • [6] Carter R., 2005, ALGEBRAS FINITE AFFI
  • [7] Topological field theory interpretation of string topology
    Cattaneo, AS
    Fröhlich, J
    Pedrini, B
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 240 (03) : 397 - 421
  • [8] Higher-dimensional B F theories in the Batalin-Vilkovisky formalism:: The BV action and generalized Wilson loops
    Cattaneo, AS
    Rossi, CA
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 221 (03) : 591 - 657
  • [9] Chas M, 2004, LEGACY OF NIELS HENRIK ABEL, P771
  • [10] Chas Moira., 1999, STRING TOPOLOGY