Fundamental Solutions of Kohn Sub-Laplacians on Anisotropic Heisenberg Groups and H-type Groups

被引:1
作者
Jin, Yongyang [1 ]
Zhang, Genkai [2 ,3 ]
机构
[1] Zhejiang Univ Technol, Dept Appl Math, Hangzhou 310032, Zhejiang, Peoples R China
[2] Chalmers, Dept Math, S-41296 Gothenburg, Sweden
[3] Gothenburg Univ, Gothenburg, Sweden
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2011年 / 54卷 / 01期
基金
瑞典研究理事会;
关键词
SUBELLIPTIC OPERATORS; HERMITE;
D O I
10.4153/CMB-2010-086-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the fundamental solutions of Kohn sub-Laplacians Delta+i alpha partial derivative(t) on the anisotropic Heisenberg groups are tempered distributions and have meromorphic continuation in alpha with simple poles. We compute the residues and find the partial fundamental solutions at the poles. We also find formulas for the fundamental solutions for some matrix-valued Kohn type sub-Laplacians on H-type groups.
引用
收藏
页码:126 / 140
页数:15
相关论文
共 14 条
[1]  
[Anonymous], 1971, PRINCETON MATH SER
[2]  
[Anonymous], 1997, J. Geom. Anal, DOI DOI 10.1007/BF02921707
[3]  
[Anonymous], 1993, LECT HERMITE LAGUERR
[4]   The green function of model step two hypoelliptic operators and the analysis of certain tangential cauchy Riemann complexes [J].
Beals, R ;
Gaveau, B ;
Greiner, P .
ADVANCES IN MATHEMATICS, 1996, 121 (02) :288-345
[5]   Fundamental solutions for hermite and subelliptic operators [J].
Calin, Ovidiu ;
Chang, Der-Chen ;
Tie, Jingzhi .
JOURNAL D ANALYSE MATHEMATIQUE, 2006, 100 (1) :223-248
[6]   A note on Hermite and subelliptic operators [J].
Chang, DC ;
Tie, JZ .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (04) :803-818
[7]   H-TYPE GROUPS AND IWASAWA DECOMPOSITIONS [J].
COWLING, M ;
DOOLEY, AH ;
KORANYI, A ;
RICCI, F .
ADVANCES IN MATHEMATICS, 1991, 87 (01) :1-41
[8]  
Cowling M.G., 1998, J GEOM ANAL, V8, P199
[9]   FUNDAMENTAL SOLUTION FOR A SUBELLIPTIC OPERATOR [J].
FOLLAND, GB .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (02) :373-376