Transformations of some Gauss hypergeometric functions

被引:16
作者
Vidunas, R [1 ]
机构
[1] Kyushu Univ, Dept Math, Fukuoka 8128581, Japan
关键词
Gauss hypergeometric function; algebraic transformation; Belyi function;
D O I
10.1016/j.cam.2004.09.053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents explicit algebraic transformations of some Gauss hypergeometric functions. Specifically, the transformations considered apply to hypergeometric solutions of hypergeometric differential equations with the local exponent differences 1/k, 1/l, 1/m such that k, l, m are positive integers and 1/k + 1/l + 1/m < 1. All algebraic transformations of these Gauss hypergeometric functions are considered. We show that apart from classical transformations of degree 2, 3, 4, 6 there are several other transformations of degree 6, 8, 9, 10, 12, 18, 24. Besides, we present an algorithm to compute relevant Belyi functions explicitly. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:473 / 487
页数:15
相关论文
共 15 条
[1]  
Andrews GE., 1999, SPECIAL FUNCTIONS, V71
[2]  
[Anonymous], FUNDAM PRIKL MAT
[3]  
BEUKERS F, 2002, GAUSS HYPERGEOMETRIC
[4]  
BROUGHTON SA, 2000, NEW YORK J MATH, V6, P237
[5]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA, VII
[6]   Coxeter decompositions of hyperbolic polygons [J].
Felikson, AA .
EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (07) :801-817
[7]  
Goursat E., 1881, ANN SCI ECOLE NORM S, V10, P3
[8]  
Hartshorne R., 1977, Graduate Texts in Mathematics
[9]  
Hodgkinson J, 1920, P LOND MATH SOC, V18, P268
[10]  
KITAEV AV, 2003, DESSINS ENFANTS THEI