Variance analysis of L2 model reduction when undennodeling -: the output error case

被引:8
作者
Tjärnström, F [1 ]
机构
[1] Linkoping Univ, Dept Elect Engn, SE-58183 Linkoping, Sweden
关键词
system identification; model reduction; variance; reduced-order models; linear systems;
D O I
10.1016/S0005-1098(03)00175-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this contribution, variance properties of L-2 model reduction are studied. That is, given an estimated model of high order we study the resulting variance of an L-2 reduced approximation. The main result of the paper is showing that estimating a low-order output error (OE) model via L-2 model reduction of a high-order model gives a smaller variance compared to estimating a low-order model directly from data in case of undermodeling. This has previously been shown to hold for Finite Impulse Response models, but is in this paper extended to general linear OE models. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1809 / 1815
页数:7
相关论文
共 17 条
[1]  
[Anonymous], IDENTIFICATION MULTI
[2]   APPROXIMATION OF DISCRETE LINEAR-SYSTEMS [J].
APLEVICH, JD .
INTERNATIONAL JOURNAL OF CONTROL, 1973, 17 (03) :565-575
[3]   Convergent algorithm for L2 model reduction [J].
Ferrante, A ;
Krajewski, W ;
Lepschy, A ;
Viaro, U .
AUTOMATICA, 1999, 35 (01) :75-79
[4]  
Hsia T.C., 1977, IDENTIFICATION LEAST
[5]  
Ljung L., 1999, SYSTEM IDENTIFICATIO
[6]   Estimation of model quality [J].
Ninness, B ;
Goodwin, GC .
AUTOMATICA, 1995, 31 (12) :1771-1797
[7]  
Porat B., 1986, Proceedings of the 25th IEEE Conference on Decision and Control (Cat. No.86CH2344-0), P2002
[8]  
Porat B., 1985, P 7 IFAC S ID SYST P, P963
[9]   AN INDIRECT PREDICTION ERROR METHOD FOR SYSTEM-IDENTIFICATION [J].
SODERSTROM, T ;
STOICA, P ;
FRIEDLANDER, B .
AUTOMATICA, 1991, 27 (01) :183-188
[10]   A NEW ALGORITHM FOR L2 OPTIMAL-MODEL REDUCTION [J].
SPANOS, JT ;
MILMAN, MH ;
MINGORI, DL .
AUTOMATICA, 1992, 28 (05) :897-909