Convolution finite element method for analysis of piezoelectric materials

被引:5
作者
Amiri-Hezaveh, A. [1 ]
Moghaddasi, H. [2 ]
Ostoja-Starzewski, M. [1 ,3 ,4 ]
机构
[1] Univ Illinois, Dept Mech Sci & Engn, Champaign, IL 61820 USA
[2] Univ Strathclyde, Dept Civil & Environm Engn, Glasgow G1 1XQ, Scotland
[3] Univ Illinois, Inst Condensed Matter Theory, Champaign, IL USA
[4] Univ Illinois, Beckman Inst, Champaign, IL USA
关键词
Convolution finite element method; Elastodynamics; Piezoelectric materials; VARIATIONAL FORMULATIONS; FIELD;
D O I
10.1016/j.cma.2022.115463
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A new finite element scheme is proposed to analyze the elastodynamics of materials having interactions between electrical and mechanical fields. Based on coupled constitutive equations and the alternative field equations, a new form of weighted residual in terms of the convolution product is established. Next, the Galerkin formulation is utilized with a particular form of spatial-temporal shape functions. High precision for arbitrary time intervals can be attained by reducing the integral forms to a set of algebraic equations. To show the accuracy of the proposed method, several examples, including elastodynamics of 1d and 2d piezoelectric materials under various initial and boundary conditions are presented. The present contribution introduces a new solution procedure for the analysis and design of active materials.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:34
相关论文
共 39 条
  • [1] Allik H., 1970, International Journal for Numerical Methods in Engineering, V2, P151, DOI 10.1002/nme.1620020202
  • [2] A convolutional-iterative solver for nonlinear dynamical systems
    Amiri-Hezaveh, A.
    Ostoja-Starzewski, M.
    [J]. APPLIED MATHEMATICS LETTERS, 2022, 130
  • [3] Convolution finite element method: an alternative approach for time integration and time-marching algorithms
    Amiri-Hezaveh, A.
    Masud, A.
    Ostoja-Starzewski, M.
    [J]. COMPUTATIONAL MECHANICS, 2021, 68 (03) : 667 - 696
  • [4] Stress field formulation of linear electro-magneto-elastic materials
    Amiri-Hezaveh, A.
    Karimi, P.
    Ostoja-Starzewski, M.
    [J]. MATHEMATICS AND MECHANICS OF SOLIDS, 2019, 24 (12) : 3806 - 3822
  • [5] IBVP FOR ELECTROMAGNETO-ELASTIC MATERIALS: VARIATIONAL APPROACH
    Amiri-Hezaveh, Amirhossein
    Karimi, Pouyan
    Ostoja-Starzewski, Martin
    [J]. MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS, 2020, 8 (01) : 47 - 67
  • [6] Brown W. F., 1966, MAGNETOELASTIC INTER
  • [7] A new hybrid finite element approach for plane piezoelectricity with defects
    Cao, Changyong
    Yu, Aibing
    Qin, Qing-Hua
    [J]. ACTA MECHANICA, 2013, 224 (01) : 41 - 61
  • [8] THERMODYNAMIC RESTRICTIONS ON CONSTITUTIVE EQUATIONS OF ELECTROMAGNETIC THEORY
    COLEMAN, BD
    DILL, EH
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1971, 22 (04): : 691 - &
  • [9] Dispersion of elastic guided waves in piezoelectric infinite plates with inversion layers
    Cortes, Daniel H.
    Datta, Subhendu K.
    Mukdadi, Osama M.
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2008, 45 (18-19) : 5088 - 5102
  • [10] Piezoelectric structural acoustic problems:: Symmetric variational formulations and finite element results
    Deue, J. -F.
    Larbi, W.
    Ohayon, R.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (19-20) : 1715 - 1724