Blockade of advanced glycation end-product formation restores ischemia-induced angiogenesis in diabetic mice

被引:125
作者
Tamarat, R
Silvestre, JS
Huijberts, M
Benessiano, J
Ebrahimian, TG
Duriez, M
Wautier, MP
Wautier, JL
Lévy, BI
机构
[1] Univ Paris 07, Hop Lariboisiere, INSERM, U541,Inst Fed Rech Circulat, F-75475 Paris 10, France
[2] INSERM, U76, F-75739 Paris 15, France
[3] Inst Natl Transfus Sanguine, F-75739 Paris, France
[4] Cardiovasc Res Inst Maastricht, NL-6202 AZ Maastricht, Netherlands
关键词
D O I
10.1073/pnas.1236929100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We hypothesized that formation of advanced glycation end products (AGEs) associated with diabetes reduces matrix degradation by metailoproteinases (MMPs) and contributes to the impairment of ischemia-induced angiogenesis. Mice were treated or not with streptozotocin (40 mg/kg) and streptozotocin plus aminoguanidine (AGEs formation blocker, 50 mg/kg). After 8 weeks of treatment, hindlimb ischemia was induced by right femoral artery ligature. Plasma AGE levels were strongly elevated in diabetic mice when compared with control mice (579 +/- 21 versus 47 +/- 4 pmol/ml, respectively; P < 0.01). Treatment with aminoguanidine reduced AGE plasma levels when compared with untreated diabetic mice (P < 0.001). After 28 days of ischemia, ischemic/nonischemic leg angiographic score, capillary density, and laser Doppler skin-perfusion ratios were 1.4-, 1.5-, and 1.4-fold decreased in diabetic mice in reference to controls (P < 0.01). Treatment with aminoguanidine completely normalized ischemia-induced angiogenesis in diabetic mice. We next analyzed the role of proteolysis in AGE formation-induced hampered neovascularization process. After 3 days of ischemia, MMP-2 activity and MMP-3 and MMP-13 protein levels were increased in untreated and aminoguanidine-treated diabetic mice when compared with controls (P < 0.05). Despite this activation of the MMP pathway, collagenolysis was decreased in untreated diabetic mice. Conversely, treatment of diabetic mice with aminoguanidine restored collagenolysis toward levels found in control mice. In conclusion, blockade of AGE formation by aminoguanidine normalizes impaired ischemia-induced angiogenesis in diabetic mice. This effect is probably mediated by restoration of matrix degradation processes that are disturbed as a result of AGE accumulation.
引用
收藏
页码:8555 / 8560
页数:6
相关论文
共 40 条
[31]   Glucose-induced inhibition of angiogenesis in the rat sponge granuloma is prevented by aminoguanidine [J].
Teixeira, AS ;
Andrade, SP .
LIFE SCIENCES, 1999, 64 (08) :655-662
[32]   Regulation of vascular endothelial growth factor expression by advanced glycation end products [J].
Treins, C ;
Giorgetti-Peraldi, S ;
Murdaca, J ;
Van Obberghen, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (47) :43836-43841
[33]   Diabetes mellitus enhances vascular matrix metalloproteinase activity - Role of oxidative stress [J].
Uemura, S ;
Matsushita, H ;
Li, W ;
Glassford, AJ ;
Asagami, T ;
Lee, KH ;
Harrison, DG ;
Tsao, PS .
CIRCULATION RESEARCH, 2001, 88 (12) :1291-1298
[34]   RETRACTED: Novel role of gp91phox-containing NAD(P)H oxidase in vascular endothelial growth factor-induced signaling and angiogenesis (Retracted Article) [J].
Ushio-Fukai, M ;
Tang, Y ;
Fukai, T ;
Dikalov, SI ;
Ma, YX ;
Fujimoto, M ;
Quinn, MT ;
Pagano, PJ ;
Johnson, C ;
Alexander, RW .
CIRCULATION RESEARCH, 2002, 91 (12) :1160-1167
[35]   MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes [J].
Vu, TH ;
Shipley, JM ;
Bergers, G ;
Berger, JE ;
Helms, JA ;
Hanahan, D ;
Shapiro, SD ;
Senior, RM ;
Werb, Z .
CELL, 1998, 93 (03) :411-422
[36]   Vascular endothelial growth factor-A-induced chemotaxis of monocytes is attenuated in patients with diabetes mellitus - A potential predictor for the individual capacity to develop collaterals [J].
Waltenberger, J ;
Lange, J ;
Kranz, A .
CIRCULATION, 2000, 102 (02) :185-+
[37]   Impaired collateral vessel development in diabetes: potential cellular mechanisms and therapeutic implications [J].
Waltenberger, J .
CARDIOVASCULAR RESEARCH, 2001, 49 (03) :554-560
[38]   N(carboxymethyl)lysine as a biomarker for microvascular complications in type 2 diabetic patients [J].
Wautier, MP ;
Massin, P ;
Guillausseau, PJ ;
Huijberts, M ;
Levy, B ;
Boulanger, E ;
Laloi-Michelin, M ;
Wautier, JL .
DIABETES & METABOLISM, 2003, 29 (01) :44-52
[39]   Breakers of advanced glycation end products restore large artery properties in experimental diabetes [J].
Wolffenbuttel, BHR ;
Boulanger, CM ;
Crijns, FRL ;
Huijberts, MSP ;
Poitevin, P ;
Swennen, GNM ;
Vasan, S ;
Egan, JJ ;
Ulrich, P ;
Cerami, A ;
Levy, BI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (08) :4630-4634
[40]   Advanced glycation end products-driven angiogenesis in vitro [J].
Yamagishi, S ;
Yonekura, H ;
Yamamoto, Y ;
Katsuno, K ;
Sato, F ;
Mita, I ;
Ooka, H ;
Satozawa, N ;
Kawakami, T ;
Nomura, M ;
Yamamoto, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (13) :8723-8730