On signed graphs whose second largest Laplacian eigenvalue does not exceed 3

被引:6
作者
Belardo, Francesco [1 ,2 ]
Petecki, Pawel [1 ,3 ]
Wang, Jianfeng [4 ]
机构
[1] Univ Primorska, FAMNIT, Koper, Slovenia
[2] Univ Naples Federico II, Dept Math & Applicat R Caccioppoli, Naples, Italy
[3] AGH Univ Sci & Technol, PL-30059 Krakow, Poland
[4] QingHai Normal Univ, Dept Math, Xining, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
signed graph; Laplacian; second largest eigenvalue; spectral determination; friendship graph; 05C50; 05C22;
D O I
10.1080/03081087.2015.1120701
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let be a signed graph, where G is the underlying graph and <inline-graphic is the signature function on the edges of G. In this paper, we consider the Laplacian eigenvalues of signed graphs and we characterize the connected signed graphs whose second largest Laplacian eigenvalue does not exceed 3. Furthermore, we study the Laplacian spectral determination of most graphs in the latter family.
引用
收藏
页码:1785 / 1799
页数:15
相关论文
共 24 条