Advances in functionalized polymer coatings on biodegradable magnesium alloys - A review

被引:373
作者
Li, Ling-Yu [1 ]
Cui, Lan-Yue [1 ]
Zeng, Rong-Chang [1 ]
Li, Shuo-Qi [1 ]
Chen, Xiao-Bo [2 ]
Zheng, Yufeng [3 ]
Kannan, M. Bobby [4 ]
机构
[1] Shandong Univ Sci & Technol, Coll Mat Sci & Engn, Qingdao 266590, Peoples R China
[2] RMIT Univ, Sch Engn, Carlton, Vic 3053, Australia
[3] Peking Univ, Dept Mat Sci & Engn, Coll Engn, Beijing 100871, Peoples R China
[4] James Cook Univ, Coll Sci & Engn, Biomat & Engn Mat BEM Lab, Townsville, Qld 4811, Australia
基金
中国国家自然科学基金;
关键词
Magnesium alloy; Biomaterial; Polymer coating; Degradation; Functional properties; IN-VITRO CORROSION; MG-CA ALLOYS; FLUORINE-DOPED HYDROXYAPATITE; EPSILON-CAPROLACTONE PCL; COLLAGEN TYPE-I; BIOMEDICAL APPLICATIONS; ANTIBACTERIAL PERFORMANCE; ORTHOPEDIC APPLICATIONS; COMPOSITE COATINGS; AZ31; ALLOY;
D O I
10.1016/j.actbio.2018.08.030
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Magnesium (Mg) and its alloys have become a research frontier in biodegradable materials owing to their superior biocompatibility and excellent biomechanical compatibility. However, their high degradation rate in the physiological environment should be well tackled prior to clinical applications. This review summarizes the latest progress in the development of polymeric coatings on biodegradable Mg alloys over the last decade, regarding preparation strategies for polylactic acid (PLA), poly (latic-co-glycolic) acid (PLGA), polycaprolactone (PCL), polydopamine (PDA), chitosan (CS), collagen (Col) and their composite, and their performance in terms of corrosion resistance and biocompatibility. Feasible perspectives and developing directions of next generation of polymeric coatings with respect to biomedical Mg alloys are briefly discussed. Statement of Significance Magnesium (Mg) and its alloys have become a research frontier in biodegradable materials owing to their superior biocompatibility and suitable biomechanical compatibility. However, the principal drawback of Mg-based implants is their poor corrosion resistance in physiological environments. Hence, it is vital to mitigate the degradation/corrosion behavior of Mg alloys for safe biomedical deployments. This review summarizes the latest progress in development of polymeric coatings on biomedical Mg alloys regarding preparation strategy, corrosion resistance and biocompatibility, including polylactic acid (PLA), poly (latic-co-glycolic) acid (PLGA), polycaprolactone (PCL), chitosan (CS), polydopamine (PDA), collagen (Col) and their composite. In addition, functionalized polymer coatings with Mg alloys exhibits a promising prospect owing to their ability of degradation along with biocompatibility, self-healing, drug-delivery and osteoinduction. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:23 / 36
页数:14
相关论文
共 135 条
[31]   Corrosion resistance of a self-healing micro-arc oxidation/polymethyltrimethoxysilane composite coating on magnesium alloy AZ31 [J].
Cui, Lan-Yue ;
Gao, Shang-Dong ;
Li, Ping-Ping ;
Zeng, Rong-Chang ;
Zhang, Fen ;
Li, Shuo-Qi ;
Han, En-Hou .
CORROSION SCIENCE, 2017, 118 :84-95
[32]   Degradation mechanism of micro-arc oxidation coatings on biodegradable Mg-Ca alloys: The influence of porosity [J].
Cui, Lan-Yue ;
Zeng, Rong-Chang ;
Guan, Shao-Kang ;
Qi, Wei-Chen ;
Zhang, Fen ;
Li, Shuo-Qi ;
Han, En-Hou .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 695 :2464-2476
[33]   Corrosion resistance of layer-by-layer assembled polyvinylpyrrolidone/polyacrylic acid and amorphous silica films on AZ31 magnesium alloys [J].
Cui, Lan-Yue ;
Zeng, Rong-Chang ;
Li, Shuo-Qi ;
Zhang, Fen ;
Han, En-Hou .
RSC ADVANCES, 2016, 6 (68) :63107-63116
[34]   PLGA-based nanoparticles: An overview of biomedical applications [J].
Danhier, Fabienne ;
Ansorena, Eduardo ;
Silva, Joana M. ;
Coco, Regis ;
Le Breton, Aude ;
Preat, Veronique .
JOURNAL OF CONTROLLED RELEASE, 2012, 161 (02) :505-522
[35]   Polymeric Modification and Its Implication in Drug Delivery: Poly-ε-caprolactone (PCL) as a Model Polymer [J].
Dash, Tapan K. ;
Konkimalla, V. Badireenath .
MOLECULAR PHARMACEUTICS, 2012, 9 (09) :2365-2379
[36]   Poly-ε-caprolactone based formulations for drug delivery and tissue engineering: A review [J].
Dash, Tapan K. ;
Konkimalla, V. Badireenath .
JOURNAL OF CONTROLLED RELEASE, 2012, 158 (01) :15-33
[37]   Selecting the correct cellular model for assessing of the biological response of collagen-based biomaterials [J].
Davidenko, Natalia ;
Hamaia, Samir ;
Bax, Daniel V. ;
Malcor, Jean-Daniel ;
Schuster, Carlos F. ;
Gullberg, Donald ;
Farndale, Richard W. ;
Best, Serena M. ;
Cameron, Ruth E. .
ACTA BIOMATERIALIA, 2018, 65 :88-101
[38]   Chitosan-based water-propelled micromotors with strong antibacterial activity [J].
Delezuk, Jorge A. M. ;
Ramirez-Herrera, Doris E. ;
de Avila, Berta Esteban-Fernandez ;
Wang, Joseph .
NANOSCALE, 2017, 9 (06) :2195-2200
[39]   Building-Block Diversity in Polydopamine Underpins a Multifunctional Eumelanin-Type Platform Tunable Through a Quinone Control Point [J].
Della Vecchia, Nicola F. ;
Avolio, Roberto ;
Alfe, Michela ;
Errico, Maria E. ;
Napolitano, Alessandra ;
d'Ischia, Marco .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (10) :1331-1340
[40]   Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review [J].
Ding, Yunfei ;
Wen, Cuie ;
Hodgson, Peter ;
Li, Yuncang .
JOURNAL OF MATERIALS CHEMISTRY B, 2014, 2 (14) :1912-1933