Convergence of λ-Bernstein operators based on (p, q)-integers

被引:13
作者
Cai, Qing-Bo [1 ]
Cheng, Wen-Tao [2 ]
机构
[1] Quanzhou Normal Univ, Sch Math & Comp Sci, Quanzhou, Peoples R China
[2] Anqing Normal Univ, Sch Math & Computat Sci, Anqing, Peoples R China
基金
中国国家自然科学基金;
关键词
lambda-Bernstein operators; (p; q)-integers; Moduli of continuity; Rate of convergence; Lipschitz continuous functions; APPROXIMATION PROPERTIES; STATISTICAL APPROXIMATION; Q)-ANALOG;
D O I
10.1186/s13660-020-2309-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we construct a new class of positive linear lambda-Bernstein operators based on (p, q)-integers. We obtain a Korovkin type approximation theorem, study the rate of convergence of these operators by using the conception of K-functional and moduli of continuity, and also give a convergence theorem for the Lipschitz continuous functions.
引用
收藏
页数:17
相关论文
共 29 条
[1]   On a Modification of (p, q)-Szasz-Mirakyan Operators [J].
Acar, Tuncer ;
Agrawal, Purshottam Narain ;
Kumar, A. Sathish .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2018, 12 (01) :155-167
[2]   (p,q)-Generalization of Szasz-Mirakyan operators [J].
Acar, Tuncer .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (10) :2685-2695
[3]   Approximation properties of λ-Kantorovich operators [J].
Acu, Ana-Maria ;
Manav, Nesibe ;
Sofonea, Daniel Florin .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
[4]  
Al-Abied A.A.H., 2020, AZERB J MATH, V10
[5]   On Some Statistical Approximation by (p, q)-Bleimann, Butzer and Hahn Operators [J].
Ansari, Khursheed J. ;
Ahmad, Ishfaq ;
Mursaleen, M. ;
Hussain, Iqtadar .
SYMMETRY-BASEL, 2018, 10 (12)
[6]  
Cai Q.B., 2017, J INEQUAL APPL, V2017
[7]  
Cai Q.B., 2018, J INEQUAL APPL, V2018
[8]   Statistical approximation properties of λ-Bernstein operators based on q-integers [J].
Cai, Qing-Bo ;
Zhou, Guorong ;
Li, Junjie .
OPEN MATHEMATICS, 2019, 17 :487-498
[9]   On (p, q)-analogue of Kantorovich type Bernstein-Stancu-Schurer operators [J].
Cai, Qing-Bo ;
Zhou, Guorong .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 276 :12-20
[10]  
Cheng WT, 2019, J INEQUAL APPL, DOI 10.1186/s13660-019-2053-3