GLOBAL EXISTENCE AND LARGE TIME BEHAVIOR OF A 2D KELLER-SEGEL SYSTEM IN LOGARITHMIC LEBESGUE SPACES

被引:3
|
作者
Deng, Chao [1 ]
Li, Tong [2 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2019年 / 24卷 / 01期
关键词
The Keller-Segel model of chemotaxis; 2D parabolic system; global well-posedness; large time behavior; logarithmic Lebesgue spaces; PARABOLIC-PARABOLIC TYPE; REINFORCED RANDOM-WALKS; CHEMOTAXIS MODEL; TRAVELING-WAVES; NONLINEAR STABILITY; R-N; AGGREGATION;
D O I
10.3934/dcdsb.2018093
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the global analysis for the two-dimensional parabolic-parabolic Keller-Segel system in the whole space. By well balanced arguments of the L-1 and L-infinity spaces, we first prove global well-posedness of the system in L-1 x L-infinity which partially answers the question posted by Kozono et al in [19]. For the case mu(0) > 0, we make full use of the linear parts of the system to get the improved long time decay property. Moreover, by using the new formulation involving all linear parts, introducing the logarithmic-weight in time to modify the other endpoint space L-infinity x L-infinity, and carefully decomposing time into several pieces, we are able to establish the global well-posedness and large time behavior of the system in L-ln(infinity) x L-infinity.
引用
收藏
页码:183 / 195
页数:13
相关论文
共 50 条
  • [21] Global Existence and Boundedness in a Supercritical Quasilinear Degenerate Keller-Segel System Under Relaxed Smallness Conditions for Initial Data
    Ogawa, Tsukasa
    Yokota, Tomomi
    ACTA APPLICANDAE MATHEMATICAE, 2022, 180 (01)
  • [22] Finite-Time Blowup in a Supercritical Quasilinear Parabolic-Parabolic Keller-Segel System in Dimension 2
    Cieslak, Tomasz
    Stinner, Christian
    ACTA APPLICANDAE MATHEMATICAE, 2014, 129 (01) : 135 - 146
  • [23] Well-posedness and asymptotic behavior for the fractional Keller-Segel system in critical Besov-Herz-type spaces
    Azevedo, Joelma
    Bezerra, Mario
    Cuevas, Claudio
    Soto, Herme
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (10) : 6268 - 6287
  • [24] On the global well-posedness for the 2D incompressible Keller-Segel-Navier-Stokes equations
    Zhang, Qian
    Zhang, Yehua
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2019, 99 (11):
  • [25] Global Well-Posedness for the 2D Keller-Segel-Navier-Stokes System with Fractional Diffusion
    Wang, Chaoyong
    Jia, Qi
    Zhang, Qian
    ACTA APPLICANDAE MATHEMATICAE, 2024, 194 (01)
  • [26] Blow-up prevention by sub-logistic sources in 2D Keller-Segel chemotaxis systems with superlinear signal production
    Le, Minh
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (04):
  • [27] On the Critical Mass Patlak-Keller-Segel System for Multi-Species Populations: Global Existence and Infinite Time Aggregation
    Karmakar, Debabrata
    Wolansky, Gershon
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2022, 71 (06) : 2477 - 2527
  • [28] The stability analysis of a 2D Keller-Segel-Navier-Stokes system in fast signal diffusion
    Li, Min
    Xiang, Zhaoyin
    Zhou, Guanyu
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2023, 34 (01) : 160 - 209
  • [29] Global Strong Solutions and Large-time Behavior of 2D Tropical Climate Model
    Niu, Dong-juan
    Wang, Ying
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2023, 39 (04): : 886 - 925
  • [30] Global Strong Solutions and Large-time Behavior of 2D Tropical Climate Model
    Dong-juan Niu
    Ying Wang
    Acta Mathematicae Applicatae Sinica, English Series, 2023, 39 : 886 - 925