A q-analogue of Lehmer's congruence

被引:23
作者
Pan, Hao [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
关键词
D O I
10.4064/aa128-4-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:303 / 318
页数:16
相关论文
共 16 条
[1]   PRIMES is in P [J].
Agrawal, M ;
Kayal, N ;
Saxena, N .
ANNALS OF MATHEMATICS, 2004, 160 (02) :781-793
[2]   q-analogs of the binomial coefficient congruences of Babbage, Wolstenholme and Glaisher [J].
Andrews, GE .
DISCRETE MATHEMATICS, 1999, 204 (1-3) :15-25
[3]  
Andrews GE., 1999, SPECIAL FUNCTIONS, V71
[4]  
CHAPMAN R, IN PRESS INT J NUMBE
[5]  
CLARK WE, 1995, INT J MATH MATH SCI, V18, P197
[6]   CONGRUENCE PROPERTIES OF ORDINARY AND Q-BINOMIAL COEFFICIENTS [J].
FRAY, RD .
DUKE MATHEMATICAL JOURNAL, 1967, 34 (03) :467-&
[7]  
GARNVILLE A, 2004, SQUARE FERMAT QUOTIE, V4, pA22
[8]  
Granville A., 1997, CMS C P, V20, P253
[9]   Some arithmetic properties of the q-Euler numbers and q-Salie numbers [J].
Guo, Victor J. W. ;
Zeng, Jiang .
EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (06) :884-895
[10]   On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson [J].
Lehmer, E .
ANNALS OF MATHEMATICS, 1938, 39 :350-360