Analytic adjoint solutions for the quasi-one-dimensional Euler equations

被引:79
作者
Giles, MB [1 ]
Pierce, NA [1 ]
机构
[1] Univ Oxford, Comp Lab, Oxford OX1 3QD, England
关键词
D O I
10.1017/S0022112000002366
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The analytic properties of adjoint solutions are examined for the quasi-one-dimensional Euler equations. For shocked flow, the derivation of the adjoint problem reveals that the adjoint variables are continuous with zero gradient at the shock, and that an internal adjoint boundary condition is required at the shock. A Green's function approach is used to derive the analytic adjoint solutions corresponding to supersonic, subsonic, isentropic and shocked transonic flows in a converging-diverging duct of arbitrary shape. This analysis reveals a logarithmic singularity at the sonic throat and confirms the expected properties at the shock.
引用
收藏
页码:327 / 345
页数:19
相关论文
共 25 条
[1]   Airfoil design on unstructured grids for turbulent flows [J].
Anderson, WK ;
Bonhaus, DL .
AIAA JOURNAL, 1999, 37 (02) :185-191
[2]  
[Anonymous], COMPUTATIONAL FLUID
[3]  
Becker R, 1998, ENUMATH 97 - 2ND EUROPEAN CONFERENCE ON NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, P621
[4]  
CLIFF E, 1996, 963993CP AIAA
[5]  
CLIFF E, 1998, COMPUTATIONAL METHOD
[6]   Practical three-dimensional aerodynamic design and optimization using unstructured meshes [J].
Elliott, J ;
Peraire, J .
AIAA JOURNAL, 1997, 35 (09) :1479-1485
[7]  
GILES M, 2001, IN PRESS FLOW TURBUL
[8]  
Giles M. B., 1999, 993293 AIAA
[9]  
GILES MB, 1997, 971850 AIAA
[10]  
GILES MB, 1998, NUMERICAL METHODS FL, V6